98%
921
2 minutes
20
This study investigated the covalent conjugation of hemp protein isolate (HPI) with curcumin induced by ultrasound-generated free radicals and its impact on HPI's structural and functional properties. Ultrasound treatment unfolded the protein structure, increased free amino and sulfhydryl groups, and altered the secondary structure. Curcumin addition enhanced free radical scavenging capacity. Conjugation with curcumin significantly improved emulsifying activity index (+ 2.6-fold), foam stability (+ 1.8-fold), and solubility (+ 0.9-fold) and further enhanced free radical scavenging capability (+ 2.4 or 2.7-fold). Conjugation with curcumin also enabled gel formation, as evidenced by a continuous increase in the storage modulus of HPI during heating and cooling. These findings highlight the potential of HPI-curcumin conjugates as healthy ingredients in functional food applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2025.144096 | DOI Listing |
Chem Sci
August 2025
College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 P. R. China
The photocatalytic oxidative dipolar [3 + 2] cycloaddition reaction is a promising green approach for producing pyrrolo[2,1-]isoquinolines. However, developing sustainable cycloaddition methods with heterogeneous photocatalysts is still in its infancy, largely owing to their low reactivity and photostability. Herein, we propose a charge-oxygen synergy strategy through a dual-engineered covalent organic framework (COF) by integrating π-spacers with donor-acceptor motifs to promote intermolecular cycloaddition.
View Article and Find Full Text PDFAnal Biochem
September 2025
Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Cho Minami, Tottori, 680-8552, Japan.
The duplex-forming behavior of an inchworm-type PNA-PEG conjugate (i-PPc), engineered for the selective recognition of point mutations in DNA, was assessed through thermodynamic analysis employing UV melting curves and circular dichroism spectroscopy. The i-PPc demonstrated the ability to form stable duplexes exclusively with fully complementary DNA sequences, while no hybridization with single-base mismatched sequences. This binary on/off hybridization behavior was maintained even under physiologically relevant conditions (37 °C), thereby illustrating the exceptional point mutation discrimination capability of i-PPc.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec, Canada H3A 0C5.
As the first-line chemotherapeutic for glioblastoma multiforme (GBM), Temozolomide (TMZ) suffers from rapid degradation in physiological fluid, making it difficult to deliver sufficient doses of active TMZ to GBM tumors without inducing severe side effects. By protecting TMZ and then controlling its release using an external stimulus, we can prevent its premature degradation, thereby increasing its active concentration at the tumor site. Here, we present a near-infrared (NIR) controlled system in which TMZ is protected within a polymer before its on-demand release.
View Article and Find Full Text PDFChem Rec
September 2025
Chemistry Department, and Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
Carbon dioxide (CO) capture technology (CCT) is a critical step toward reducing the environmental impact of fossil fuel combustion, which contributes significantly to global climate change. This review examines the current state of CCT, focusing on its efficiency, limitations, and scalability. Advanced technologies such as postcombustion, precombustion, oxyfuel combustion, and direct air capture are examined, with an emphasis on their suitability for industrial-scale applications.
View Article and Find Full Text PDFFood Chem
August 2025
INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, CBRS, 2 rue du prof. Descottes, F-87000 Limoges, France; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Slechtitelu 27, 783 71, Olomouc, Czech R
The synergistic association of different polyphenols has gained much interest in the food industry to develop efficient antioxidant cocktails, reducing the concentration of active agents and subsequently potential toxicity. The theoretical description and prediction of such processes are of central interest in this development. This study aims at benchmarking the performance of molecular dynamics (MD) to predict the formation of non-covalent complexes between π-conjugated antioxidants, including two prototypes (quercetin and vitamin E), in a pure 1,2-dipalmitoylphosphatidylcholine (DOPC) lipid bilayer.
View Article and Find Full Text PDF