98%
921
2 minutes
20
Background: Finding a biomarker to diagnose migraine remains a significant challenge in the headache field. Migraine patients exhibit dynamic and recurrent alterations in the brainstem-thalamo-cortical loop, including reduced thalamocortical activity and abnormal habituation during the interictal phase. Although these insights into migraine pathophysiology have been valuable, they are not currently used in clinical practice. This study aims to evaluate the potential of Artificial Neural Networks (ANNs) in distinguishing migraine patients from healthy individuals using neurophysiological recordings.
Methods: We recorded Somatosensory Evoked Potentials (SSEPs) to gather electrophysiological data from low- and high-frequency signal bands in 177 participants, comprising 91 migraine patients (MO) during their interictal period and 86 healthy volunteers (HV). Eleven neurophysiological variables were analyzed, and Principal Component Analysis (PCA) and Forward Feature Selection (FFS) techniques were independently employed to identify relevant variables, refine the feature space, and enhance model interpretability. The ANNs were then trained independently with the features derived from the PCA and FFS to delineate the relationship between electrophysiological inputs and the diagnostic outcome.
Results: Both models demonstrated robust performance, achieving over 68% in all the performance metrics (accuracy, sensitivity, specificity, and F1 scores). The classification model trained with FFS-derived features performed better than the model trained with PCA results in distinguishing patients with MO from HV. The model trained with FFS-derived features achieved a median accuracy of 72.8% and an area under the curve (AUC) of 0.79, while the model trained with PCA results showed a median accuracy of 68.9% and an AUC of 0.75.
Conclusion: Our findings suggest that ANNs trained with SSEP-derived variables hold promise as a noninvasive tool for migraine classification, offering potential for clinical application and deeper insights into migraine diagnostics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970013 | PMC |
http://dx.doi.org/10.1186/s10194-025-01989-2 | DOI Listing |
Sud Med Ekspert
January 2025
Bureau of Forensic Medical Examination of the Department of Health Care of the City of Moscow, Moscow, Russia.
The article considers the main phases of traffic injury (TI) described by A.A. Solokhin in 1968 and their modern application in forensic medical and automotive examination.
View Article and Find Full Text PDFMol Divers
September 2025
Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.
View Article and Find Full Text PDFDiabetologia
September 2025
Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
This review article, developed by the EASD Global Council, addresses the growing global challenges in diabetes research and care, highlighting the rising prevalence of diabetes, the increasing complexity of its management and the need for a coordinated international response. With regard to research, disparities in funding and infrastructure between high-income countries and low- and middle-income countries (LMICs) are discussed. The under-representation of LMIC populations in clinical trials, challenges in conducting large-scale research projects, and the ethical and legal complexities of artificial intelligence integration are also considered as specific issues.
View Article and Find Full Text PDFExp Brain Res
September 2025
School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China.
This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.
View Article and Find Full Text PDF