Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We performed inelastic neutron scattering experiments on single crystal samples of a linear magnetoelectric material MnTaO, which exhibits a collinear antiferromagnetic order, to reveal the spin dynamics. Numerous modes observed in the neutron spectra were reasonably reproduced by linear spin-wave theory on the basis of the spin Hamiltonian including eight Heisenberg interactions and an easy-plane type single-ion anisotropy. The presence of strong frustration was found in the identified spin Hamiltonian.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/adc964DOI Listing

Publication Analysis

Top Keywords

spin dynamics
8
linear magnetoelectric
8
magnetoelectric material
8
material mntao
8
spin hamiltonian
8
spin
4
dynamics linear
4
mntao performed
4
performed inelastic
4
inelastic neutron
4

Similar Publications

We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.

View Article and Find Full Text PDF

Designing Spin-Correlated Radical Ion Pairs for Quantum Sensing of Electric Fields: Effect of Electron-Nuclear Hyperfine Coupling.

J Phys Chem A

September 2025

Department of Chemistry, Institute for Quantum Information Research and Engineering, and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113, United States.

Light-driven formation of radical ion pairs that occurs much faster than their electron spin dynamics results in correlated spins whose coherence properties can be used as a quantum-based electric field sensor. This results from the radical ion pair having charge and spin distributions that track one another. Thus, electric field induced changes in the distance between the two charges are reflected in the spin-spin distance that can be measured directly using out-of-phase electron spin echo envelope modulation (OOP-ESEEM), a pulse-EPR technique.

View Article and Find Full Text PDF

We present a self-consistent algorithm for optimal control simulations of many-body quantum systems. The algorithm features a two-step synergism that combines discrete real-time machine learning (DRTL) with Quantum Optimal Control Theory (QOCT) using the time-dependent Schrödinger equation. Specifically, in step (1), DRTL is employed to identify a compact working space (i.

View Article and Find Full Text PDF

Simulating non-Markovian open quantum dynamics is crucial for understanding complex quantum systems, yet it poses significant challenges for standard quantum hardware. These challenges stem from the non-Hermitian nature of such dynamics, which results in nonunitary evolution, as well as constraints imposed by limited quantum resources. To address this, we propose a hybrid quantum-classical algorithm designed for simulating dissipative dynamics in systems coupled to non-Markovian environments.

View Article and Find Full Text PDF

Precise modulation of the electronic structure in transition metals, particularly the d-band center position and spin state, remains a critical challenge to expediting hydrogen evolution reaction (HER) kinetics. Herein, we report a NiPt/Ni-heterostructured catalyst enabling simultaneous optimization of the d-band electronic structure and spin state of Ni through regulation of the NiPt and Ni bridge sites. Combining operando spectroscopy, X-ray absorption spectroscopy, density functional theory, and ab initio molecular dynamics simulations, we establish that the coordination environment and spin states of Ni at the bridge sites were effectively modulated by altering the Pt content, achieving a transition of Ni centers from the low-spin to high-spin state, and optimized intermediate adsorption/desorption behaviors.

View Article and Find Full Text PDF