Chemical modification of monensin as a source of potent antiplasmodial agents.

Bioorg Med Chem

Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. Electronic address:

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Malaria remains a significant public health issue and one of the leading causes of child mortality worldwide. Due to the growing problem of drug resistance, new modes of fighting the disease are searched for. In this context, ionophore antibiotics, natural compounds with high potential for combating parasitic diseases, deserve special attention. The primary representative of such compounds, monensin (MON), demonstrates exceptionally high antiplasmodial activity. In this work, the C26-amino derivative of MON was used as a convenient substrate for the synthesis of its acyl analogues, such as amides and urea. All derivatives exhibited strong activity against the hepatic stage of Plasmodium berghei infection in vitro, which exceeded that shown by the reference drug primaquine. The IC value for MONO-phenyl urethane (8) was less than 1 nM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2025.118177DOI Listing

Publication Analysis

Top Keywords

chemical modification
4
modification monensin
4
monensin source
4
source potent
4
potent antiplasmodial
4
antiplasmodial agents
4
agents malaria
4
malaria remains
4
remains public
4
public health
4

Similar Publications

Objective: This study investigated the locations of amino acid modifications within two major human hair keratins (Type I K31 and Type II K85) with probable implications for protein and hair structural component integrity. The particular focus was on cysteine modifications that disrupt intra-protein and inter-protein disulphide bonds.

Methods: Human hair was exposed to accelerated, sequential heat or UV treatments, simulating effects resulting from the use of heated styling tools and environmental exposure over a time frame approximating one year.

View Article and Find Full Text PDF

The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.

View Article and Find Full Text PDF

Isatin (1-indole-2,3-dione) is a privileged nitrogen-containing heterocyclic framework that has received considerable attention in anticancer drug discovery owing to its general biological behavior and structural diversity. This review focuses on isatin-heterocyclic hybrids as a valuable model in the development of new anti-cancer drugs that may reduce side effects and help overcome drug resistance, discussing their synthetic approaches and mechanism of action as apoptosis induction through kinase inhibition. With various chemical modifications, isatin had an excellent ability to build powerful isatin hybrids and conjugates targeting multiple oncogenic pathways.

View Article and Find Full Text PDF

The bacterial DNA damage (SOS) response promotes DNA repair, DNA damage tolerance, and survival in the setting of genotoxic stress, including stress induced by antibiotics. In , translesion DNA synthesis can be fulfilled by Y-family DNA polymerases, including DNA polymerase IV (DinB). DinB features a more open active site and lacks proofreading ability, promoting error-prone replication.

View Article and Find Full Text PDF

DeepRNAac4C: a hybrid deep learning framework for RNA N4-acetylcytidine site prediction.

Front Genet

August 2025

Hunan Provincial Key Laboratory of Finance and Economics Big Data Science and Technology, Hunan University of Finance and Economics, Changsha, China.

RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization.

View Article and Find Full Text PDF