Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The purpose of this study was to identify surgical techniques and implant geometries that influence in-vivo kinematics, functional outcomes, and clinical outcomes after reverse shoulder arthroplasty (RSA). Synchronized biplane radiographs imaged the operated shoulder during scapular plane abduction in 35 patients who received RSA within the past 2.5 ± 1.2 yrs. Shoulder kinematics and arthrokinematics (contact paths) were determined by matching subject-specific CT-based bone-plus-implant models to the radiographs using a validated tracking technique. Torque and total work done during abduction were measured using an isokinetic dynamometer. Implant characteristics and surgical techniques that were associated with kinematics/arthrokinematics, strength, or patient-reported outcomes were identified using multiple linear regression. Neck shaft angle, glenosphere size, and retroversion were associated with in-vivo kinematics and functional outcomes during abduction after RSA. These findings improve our understanding of how implant design and surgical technique impact kinematics and functional outcomes after RSA. The results highlight the necessity of in vivo data to validate cadaver-based research and computer simulations of joint function after RSA, emphasizing that those models do not account for the dynamic healing process and neuromuscular adaptations that occur after surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2025.104323DOI Listing

Publication Analysis

Top Keywords

kinematics functional
16
functional outcomes
16
surgical technique
8
implant design
8
outcomes reverse
8
reverse shoulder
8
shoulder arthroplasty
8
surgical techniques
8
in-vivo kinematics
8
outcomes
6

Similar Publications

The hallmarks of mechanosensitive ion channels have been observed for half a century in various cell lines, although their mechanisms and molecular identities remained unknown until recently. Identification of the bona fide mammalian mechanosensory Piezo channels resulted in an explosion of research exploring the translation of mechanical cues into biochemical signals and dynamic cell morphology responses. One of the Piezo isoforms - Piezo1 - is integral in the erythrocyte (red blood cell; RBC) membrane.

View Article and Find Full Text PDF

This Letter presents an investigation of low-energy electron-neutrino interactions in the Fermilab Booster Neutrino Beam by the MicroBooNE experiment, motivated by the excess of electron-neutrino-like events observed by the MiniBooNE experiment. This is the first measurement to use data from all five years of operation of the MicroBooNE experiment, corresponding to an exposure of 1.11×10^{21} protons on target, a 70% increase on past results.

View Article and Find Full Text PDF

Subthalamic deep brain stimulation (STN-DBS) provides unprecedented spatiotemporal precision for the treatment of Parkinson's disease (PD), allowing for direct real-time state-specific adjustments. Inspired by findings from optogenetic stimulation in mice, we hypothesized that STN-DBS can mimic dopaminergic reinforcement of ongoing movement kinematics during stimulation. To investigate this hypothesis, we delivered DBS bursts during particularly fast and slow movements in 24 patients with PD.

View Article and Find Full Text PDF

Patellofemoral Biomechanics Considerations: Analysis of Factors Contributing to Patellofemoral Pain.

Curr Sports Med Rep

September 2025

Uniformed Services University, National Capital Consortium Military Sports Medicine Fellowship, Alexander T. Augusta Military Medical Center, Fort Belvoir, VA.

Patellofemoral pain syndrome is a common cause of anterior knee pain. It has a prevalence of 22.7% in the general population and tends to affect females more than males.

View Article and Find Full Text PDF

Flexible photonic contactless human-machine interface based on visible-blind near-infrared organic photodetectors.

Natl Sci Rev

September 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.

Contactless human-machine interfaces (C-HMIs) are revolutionizing artificial intelligence (AI)-driven domains, yet face application limitations due to narrow sensing ranges, environmental fragility, and structural rigidity. To address these obstacles, we developed a flexible photonic C-HMI (Flex-PCI) using flexible visible-blind near-infrared organic photodetectors. In addition to its unprecedented performance across key metrics, including broad detection range (0.

View Article and Find Full Text PDF