98%
921
2 minutes
20
The nuclear factor kappa B (NF-κB) signalling pathway plays a crucial role in the regulation of inflammation, and previous research from our lab and others suggests that c-Ski has potential anti-inflammatory effects. However, the role and mechanism of c-Ski, which are related to the regulation of the NF-κB pathway, are still unclear. Here, U937 cells were used, and increasing c-Ski protein levels inhibited inflammatory factor production, invasion, and phagocytosis. The anti-inflammatory effect of c-Ski was similar to that of hormones. Subsequently, immunoprecipitation (IP), Western blot (WB), electrophoretic mobility shift assays (EMSAs), and dual-luciferase reporter assays were used to determine whether increasing c-Ski protein levels could increase c-Ski binding to NF-κB p65 (p65), leading to a decrease in the acetylation level and transcriptional activity of p65. Conversely, decreased p65 expression through targeted small interfering RNA (siRNA) caused the loss of the anti-inflammatory effects of c-Ski. Furthermore, immunoprecipitation confirmed the mutual interaction of c-Ski with HDAC1 and p65, and WB revealed that the anti-inflammatory effect of c-Ski was achieved through the deacetylation of p65 by HDAC1 combined with HDAC1 siRNA and inhibitors. Additionally, through quantitative proteomic analysis, we determined that increasing c-Ski levels had inhibitory effects on the NF-κB pathway. Finally, similar results were also obtained using primary bone marrow-derived macrophages (BMDMs). These findings not only confirm the anti-inflammatory effect of c-Ski but also reveal novel molecular pathways and regulatory molecules of c-Ski, which may be promising targets for direct intervention in the inflammatory response through regulation of c-Ski.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11967118 | PMC |
http://dx.doi.org/10.1186/s12964-025-02178-z | DOI Listing |
Neoplasia
September 2025
Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro para la prevención y el control del Cáncer (CECAN), Facultad de Medicina, Universidad de Chile, Santiago, Chile. Electronic address:
Accurate chromosome segregation and ribosomal gene expression silencing are essential for maintaining genome integrity, and disruptions in these processes are key for oncogenesis and cancer progression. Here, we demonstrate a novel role for the transcriptional co-repressor SKI in regulating rDNA and pericentromeric heterochromatin (PCH) silencing in human cells. We found that SKI localizes to the rDNA promoter on acrocentric chromosomes and is crucial for maintaining H3K9 trimethylation (H3K9me3) and repressing 45S rRNA gene expression.
View Article and Find Full Text PDFCell Commun Signal
April 2025
State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China.
The nuclear factor kappa B (NF-κB) signalling pathway plays a crucial role in the regulation of inflammation, and previous research from our lab and others suggests that c-Ski has potential anti-inflammatory effects. However, the role and mechanism of c-Ski, which are related to the regulation of the NF-κB pathway, are still unclear. Here, U937 cells were used, and increasing c-Ski protein levels inhibited inflammatory factor production, invasion, and phagocytosis.
View Article and Find Full Text PDFEur J Med Genet
February 2025
Human Genetics Department, University Hospital of Liège, Avenue de l'Hôpital 1, 4000, Liège, Belgium.
Shprintzen-Goldberg syndrome is a rare systemic connective tissue disorder caused by heterozygous mutations in the Sloan-Kettering Institute (SKI) gene. The clinical presentation is reminiscent of Marfan and Loeys-Dietz syndromes, making differential diagnosis challenging. Shprintzen-Goldberg syndrome's distinctive features are craniosynostosis and learning disabilities.
View Article and Find Full Text PDFInt J Biol Sci
September 2024
Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China.
Life Sci Alliance
September 2024
Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea