Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Shifts in agricultural land use over the past 200 years have led to a loss of nearly 50% of existing wetlands in the USA, and agricultural activities contribute up to 65% of the nutrients that reach the Mississippi River Basin, directly contributing to biological disasters such as the hypoxic Gulf of Mexico "Dead" Zone. Federal efforts to construct and restore wetland habitats have been employed to mitigate the detrimental effects of eutrophication, with an emphasis on the restoration of ecosystem services such as nutrient cycling and retention. Soil microbial assemblages drive biogeochemical cycles and offer a unique and sensitive framework for the accurate evaluation, restoration, and management of ecosystem services. The purpose of this study was to elucidate patterns of soil bacteria within and among wetlands by developing diversity profiles from high-throughput sequencing data, link functional gene copy number of nitrogen cycling genes to measured nutrient flux rates collected from flow-through incubation cores, and predict nutrient flux using microbial assemblage composition. Soil microbial assemblages showed fine-scale turnover in soil cores collected across the topsoil horizon (0-5 cm; top vs bottom partitions) and were structured by restoration practices on the easements (tree planting, shallow water, remnant forest). Connections between soil assemblage composition, functional gene copy number, and nutrient flux rates show the potential for soil bacterial assemblages to be used as bioindicators for nutrient cycling on the landscape. In addition, the predictive accuracy of flux rates was improved when implementing deep learning models that paired connected samples across time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965208PMC
http://dx.doi.org/10.1007/s00248-025-02516-1DOI Listing

Publication Analysis

Top Keywords

nutrient flux
16
flux rates
12
predict nutrient
8
ecosystem services
8
nutrient cycling
8
soil microbial
8
microbial assemblages
8
functional gene
8
gene copy
8
copy number
8

Similar Publications

Immune cells are increasingly recognized as nutrient sensors; however, their developmental role in regulating growth under homeostasis or dietary stress remains elusive. Here, we show that Drosophila larval macrophages, in response to excessive dietary sugar (HSD), reprogram their metabolic state by activating glycolysis, thereby enhancing TCA-cycle flux, and increasing lipogenesis-while concurrently maintaining a lipolytic state. Although this immune-metabolic configuration correlates with growth retardation under HSD, our genetic analyses reveal that enhanced lipogenesis supports growth, whereas glycolysis and lipolysis are growth-inhibitory.

View Article and Find Full Text PDF

is a human fungal pathogen that survives and proliferates within phagocytic immune cells. To sustain growth in the nutrient-limited phagosome environment, the pathogenic yeast scavenges available carbon sources, which must be metabolized through central carbon metabolism for respiration and biomass synthesis. However, carbon metabolic pathways operating in the pathogenic yeast phase have not been extensively mapped.

View Article and Find Full Text PDF

Traditional methods for fruit juice preservation use high temperatures, which degrade beneficial compounds like vitamins and antioxidants. Membrane filtration provides a gentler alternative, preserving nutrients through mild operating temperatures. This study assessed the temperature and pressure influence on watermelon juice microfiltration, focusing on permeated flow, lycopene, sugars, phenolic compounds, and flavonoids.

View Article and Find Full Text PDF

Dry matter intake () estimation in ruminants is important for providing a balanced diet, increasing animal performance, and reducing nutrient excretion. Gas flux ( and production) is related to DMI; however, there is limited information regarding the use of gas flux production when estimating DMI in growing steers. This study aimed to 1) determine the relationship of animal growth performance and gas flux variables with DMI of growing steers fed a backgrounding diet, and 2) evaluate the DMI accuracy of eight equations to predict DMI from growing steers fed a forage-based diet.

View Article and Find Full Text PDF

Influence of Leaves Extract on Human Erythrocytes.

Biology (Basel)

August 2025

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.

L. (MA) is a member of the Moraceae family, known as "white mulberry". Due to the high levels of bioactive compounds, mulberry plants can be considered a good source of nutrients and antioxidant compounds.

View Article and Find Full Text PDF