AMF and biochar reshape the bacterial network in rhizosphere soil of Ricinus communis under chromium (Cr) stress and improve soil quality.

J Hazard Mater

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilong

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Arbuscular mycorrhizal fungi (AMF) and biochar synergistically mitigate Cr toxicity in plants. Ricinus communis roots are proficient in heavy metal accumulation. However, the role of AMF and biochar in reshaping bacterial networks during Cr remediation remains unclear. This study utilized pot experiments to investigate how the "AMF-biochar-Ricinus communis" system influences bacterial networks in rhizosphere soil under Cr stress and enhances soil quality. Results indicated that under 150 mg/kg Cr stress, the AMF-biochar combination significantly increased castor plant fresh weight and soil quality index by 359.70 % and 121.25 %, respectively, compared to treatments without biochar or AMF (P < 0.05). Notably, under Cr stress, the combined treatment significantly increased the relative abundance of Arthrobacter while decreasing that of Streptomyces. Network analysis and community assembly results revealed that AMF and biochar together significantly enhanced soil bacterial network complexity and average niche width. In conclusion, the AMF-biochar combination effectively promoted Ricinus communis growth under Cr stress and regulated rhizosphere soil bacterial community stability and assembly processes, providing valuable insights into plant-microbe interactions under Cr(VI) stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.138122DOI Listing

Publication Analysis

Top Keywords

amf biochar
12
soil quality
12
rhizosphere soil
8
ricinus communis
8
bacterial networks
8
soil
5
amf
4
biochar reshape
4
reshape bacterial
4
bacterial network
4

Similar Publications

Arbuscular mycorrhizal fungi and biochar synergistically enhance Cd(II) phytoremediation in Koelreuteria bipinnata.

Ecotoxicol Environ Saf

August 2025

National Key Laboratory for Development and Utilization of Forest Food Resources, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; Tianmushan Forest Ecosystem Orientation Observation and Research Station of Zhejiang Province, Hangzhou 311311, China. Electroni

Cadmium (Cd(II)) contamination is a global environmental issue. While synergistic interactions between arbuscular mycorrhizal fungi (AMF) and biochar may enhance Cd(II) phytoremediation in plants, the combined effects on Koelreuteria bipinnata and their underlying mechanisms remain unknown. To address this, we conducted a pot experiment assessing AMF inoculation (sterilized AMF, single or mixed inoculations of Rhizophagus irregularis and Diversispora versiformis) and rice-husk biochar amendment (0 % or 3 % substrate addition) on plant growth, soil properties, and Cd(II) uptake under varying soil Cd(II) concentrations (0, 50 and 150 mg kg).

View Article and Find Full Text PDF

This work reports the synthesis, characterization, and magnetic hyperthermia performance of pyrrole-functionalized magnetic biochar (PFMB) nanocomposites prepared a hydrothermal method. The PFMB system comprises FeO nanoparticles embedded in a biochar matrix and coated with pyrrole to improve colloidal stability and heating efficiency. Structural and morphological analyses (XRD, FTIR, SEM/EDAX) confirmed the formation of a magnetite phase and successful surface functionalization.

View Article and Find Full Text PDF

Food consumption will rise rapidly as the global population grows over the next several decades. The current agricultural production system cannot solve this challenge, forcing crop growth to experience more adverse conditions. To promote the long-term sustainability of crop production and reduce reliance on excessive agrochemical use, the implementation of integrated nutrient management systems that involve the combination of chemical and biological fertilizers represents an enormous challenge.

View Article and Find Full Text PDF

Water scarcity has led to the increased use of untreated wastewater for irrigation, contributing to heavy metal (HM) accumulation in soils and crops. This study evaluated the effectiveness of organic amendments and arbuscular mycorrhizal fungi (AMF) in reducing HM bioavailability and enhancing plant growth. A two-year pot experiment (2022-2023) was conducted using eight treatments (T1-T8) and three replicates each.

View Article and Find Full Text PDF

Influencing the global carbon cycle via modification to the terrestrial soil carbon pool has been suggested as one solution to help mitigate climate change. Cropping systems cover a vast expanse of earth's surface and represent a major carbon exchange point. Investigating management practices and biotechnologies capable of influencing soil carbon in cropping systems is thus a valuable endeavour, as even modest interventions have the capacity to increase carbon stocks and improve soil fertility and plant production.

View Article and Find Full Text PDF