98%
921
2 minutes
20
This work reports the synthesis, characterization, and magnetic hyperthermia performance of pyrrole-functionalized magnetic biochar (PFMB) nanocomposites prepared a hydrothermal method. The PFMB system comprises FeO nanoparticles embedded in a biochar matrix and coated with pyrrole to improve colloidal stability and heating efficiency. Structural and morphological analyses (XRD, FTIR, SEM/EDAX) confirmed the formation of a magnetite phase and successful surface functionalization. Magnetic measurements reveal a transition from ferrimagnetic behavior in bare MB to superparamagnetism in PFMB, with saturation magnetization reduced significantly from 58.8 to 20.8 emu g. Magnetic hyperthermia experiments under alternating magnetic fields (AMF) manifest enhanced heating efficiency for PFMB, with sample absorption rate (SAR) values varying considerably from 24.27 to 53.77 W g, compared to 12.34-31.80 W g for MB. The results indicate that at higher frequencies (332 kHz and 469 kHz), both MNPs reach the therapeutic hyperthermia threshold of 42 °C in a relatively short time. The heating performance correlates well with both frequency and field amplitude. Intrinsic loss power (ILP) values for PFMB reach 0.70 nH m kg, aligning with the values reported for established polymer-coated MNPs. These results demonstrate the potential of PFMB nanocomposites as efficient and stable candidates for magnetic hyperthermia applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12330208 | PMC |
http://dx.doi.org/10.1039/d5ra04120a | DOI Listing |
Int J Biol Macromol
September 2025
Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand. Electronic address:
Magnetic chitosan nanoparticles represent a promising platform in targeted drug delivery by merging the biocompatibility and mucoadhesiveness of chitosan with the superparamagnetic iron-oxide cores magnetite (Fe₃O₄) or maghemite (γ-Fe₂O₃). This synergy enables enhanced therapeutic precision through external magnetic guidance, controlled release, and stimuli-responsive behavior. MCNPs are particularly valuable in oncology, allowing site-specific drug delivery, magnetic hyperthermia, and real-time imaging via MRI.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania.
Magnetic nanoparticles are widely explored in biomedical applications, particularly as MRI contrast agents and for magnetic hyperthermia. However, their photothermal capabilities under near-infrared (NIR) irradiation remain underexplored in realistic, tissue-like environments. This study provides a comprehensive assessment of ultrasmall FeO nanoparticles (9.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Crystal Growth Centre, Anna University, Chennai, 600025, Tamil Nadu, India.
Increase in breast cancer has led to the search for systems that can enable, targeted, sustained and prolonged release of drugs while simultaneously reducing the side effects posed by them. In light of this, folic acid-conjugated 5-Fluorouracil and doxorubicin loaded chitosan/Fe₃O₄ (FA-dual@CS/Fe₃O₄) nanocomposite has been synthesized using the chemical method for targeted breast cancer therapy in addition to CS/FeO and dual drug encapsulated CS/FeO. FTIR and XPS studies confirm the successful drug encapsulation and FA conjugation.
View Article and Find Full Text PDFSci Rep
September 2025
Department of obstetrics and gynecology, The First Hospital of Lanzhou University, Key Laboratory for GynecologicOncology, Gansu Province, China.