Fluorogenic Probes for Real-Time Tracking of Bacterial Cell Wall Dynamics with Nanoscopy.

ACS Nano

MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The bacterial cell wall, an essential structure for maintaining cell morphology and protecting against environmental hazards, is predominantly composed of peptidoglycan (PG). This intricate macromolecule undergoes dynamic synthesis and remodeling throughout the cell cycle. Despite its importance, monitoring PG dynamics in live cells, particularly with detailed spatial distribution, poses significant challenges. To this end, we present a series of rhodamine-based fluorogenic probes specifically optimized for real-time and super-resolution imaging of PG synthesis. By fine-tuning the self-aggregation of the probes through the incorporation of hydrophobic linkers, we achieved a substantial reduction in background fluorescence and significant fluorogenicity after labeling. These advancements have enabled us to attain wash-free labeling across a diverse array of bacterial species. Our approach facilitates the direct visualization of PG synthesis patterns, enabling the quantification of septal PG (sPG) synthesis rates in living bacterial cells. Furthermore, it allows for simultaneous imaging of cell division machinery in living cells via both two-dimensional (2D) and three-dimensional (3D) STED microscopy. This study provides a powerful toolkit for investigating the architecture and dynamics of the bacterial cell wall, paving new paths for research on PG-related cellular processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5c01930DOI Listing

Publication Analysis

Top Keywords

bacterial cell
12
cell wall
12
fluorogenic probes
8
cell
6
bacterial
5
probes real-time
4
real-time tracking
4
tracking bacterial
4
wall dynamics
4
dynamics nanoscopy
4

Similar Publications

Degradation during production and delivery is a significant bottleneck in developing biomolecular therapies. Protein cages, formed by engineered variants of lumazine synthase, present an effective strategy for the microbial production and isolation of labile biomolecular therapies. Genetic fusion of the target polypeptide to a cage component protomer ensures its efficient encapsulation within the cage during production in host bacterial cells, thereby protecting it from degradation.

View Article and Find Full Text PDF

Drift velocity of bacterial chemotaxis in dynamic chemical environments.

Philos Trans A Math Phys Eng Sci

September 2025

School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK.

Chemotaxis allows swimming bacteria to navigate through chemical landscapes. To date, continuum models of chemotactic populations (e.g.

View Article and Find Full Text PDF

Generalized Taylor dispersion of chiral microswimmers.

Philos Trans A Math Phys Eng Sci

September 2025

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan.

Transport phenomena of microswimmers in fluid flows play a crucial role in various biological processes, including bioconvection and cell sorting. In this article, we investigate the dispersion behaviour of chiral microswimmers in a simple shear flow using the generalized Taylor dispersion theory, inspired by biased locomotion of bacterial rheotaxis swimmers. We thus focused on the influence of shear-induced torque effects due to particle chirality, employing an extended Jeffery equation for individual deterministic dynamics.

View Article and Find Full Text PDF

The physical environment exerts a profound influence on microbial life. The directional movement of cells in response to their physical environment is understood as taxis, which has been studied in biology as chemotaxis, phototaxis, gravitaxis and so forth. These taxis are induced by physiological, physical or both factors.

View Article and Find Full Text PDF

Microscopic swimmers, such as bacteria and archaea, are paradigmatic examples of active matter systems. The study of these systems has given rise to novel concepts such as rectification of bacterial swimmers, in which microstructures can passively separate swimmers from non-swimming, inert particles. Many bacteria and archaea swim using rotary molecular motors to drive helical propellers called flagella or archaella.

View Article and Find Full Text PDF