Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Siderophore production, along with heme scavenging by hemophores, is one of the main mechanisms exploited by bacteria to achieve an adequate iron supply. Staphylococcus aureus produces two main siderophores, staphyloferrin A (SA) and staphyloferrin B (SB), with the latter produced only by the most invasive, coagulase-positive S. aureus strains. Along the seven steps of the SB biosynthetic pathway, N-(2-amino-2-carboxyethyl)-l-glutamate synthase (SbnA) catalyzes the crucial formation of the intermediate N-(2-amino-2-carboxyethyl)-l-glutamate from O-phospho-L-serine and glutamate. Our functional characterization of the enzyme highlighted that citrate inhibits SbnA with an inhibitory constant (K) in the order of magnitude of the physiological concentration of the metabolite. We searched for inhibitors of SbnA within citrate analogues and identified 2-phenylmaleic acid (2-PhMA) as the best hit, with a K of 16 ± 2 μm and a mechanism of inhibition that is competitive with O-phospho-L-serine for active site binding. The methyl ester of 2-PhMA at a 2 mm concentration was effective in inhibiting siderophore biosynthesis in S. aureus. These results pave the way for the discovery of promising inhibitors of iron acquisition that might find application as innovative antimicrobials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12414870PMC
http://dx.doi.org/10.1111/febs.70076DOI Listing

Publication Analysis

Top Keywords

inhibitors sbna
8
siderophore production
8
staphylococcus aureus
8
first-in-class inhibitors
4
sbna
4
sbna reduce
4
reduce siderophore
4
production staphylococcus
4
aureus siderophore
4
production heme
4

Similar Publications

Siderophore production, along with heme scavenging by hemophores, is one of the main mechanisms exploited by bacteria to achieve an adequate iron supply. Staphylococcus aureus produces two main siderophores, staphyloferrin A (SA) and staphyloferrin B (SB), with the latter produced only by the most invasive, coagulase-positive S. aureus strains.

View Article and Find Full Text PDF

Staphylococcus aureus assembles the siderophore, staphyloferrin B, from l-2,3-diaminopropionic acid (l-Dap), α-ketoglutarate, and citrate. Recently, SbnA and SbnB were shown to produce l-Dap and α-ketoglutarate from O-phospho-l-serine (OPS) and l-glutamate. SbnA is a pyridoxal 5'-phosphate (PLP)-dependent enzyme with homology to O-acetyl-l-serine sulfhydrylases; however, SbnA utilizes OPS instead of O-acetyl-l-serine (OAS), and l-glutamate serves as a nitrogen donor instead of a sulfide.

View Article and Find Full Text PDF

Discovery of an iron-regulated citrate synthase in Staphylococcus aureus.

Chem Biol

December 2012

Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada.

Bacteria need to scavenge iron from their environment, and this is no less important for bacterial pathogens while attempting to survive in the mammalian host. One key strategy is the synthesis of small iron chelators known as siderophores. The study of siderophore biosynthesis systems over the past several years has shed light on novel enzymology and, as such, has identified new therapeutic targets.

View Article and Find Full Text PDF