98%
921
2 minutes
20
This work reports a comprehensive study on the morphology, composition, and electronic structure of CoAl layered double hydroxide (CoAl-LDH) during the oxygen evolution reaction (OER). To capture electrochemically induced transformations, operando spectroscopic and microscopic methods are combined. The complementary data provided by operando near-edge X-ray absorption fine structure (NEXAFS), supported by density functional theory (DFT) calculations, and electrochemical atomic force microscopy (AFM), reveal that under OER conditions, CoAl-LDH is fragmented into smaller particles due to Al leaching. This process forms a "resting" phase with an average Co oxidation state of 2.5+, which readily transforms into the OER-active β-CoOOH phase upon further potential increase. This work exemplifies how operando methods enable precise tracking of oxidation state changes, element dissolution, and structural transformations at the nanoscale while the electrocatalyst is active. This approach contrasts with conventional pre- and post-mortem characterization, which would instead suggest CoO formation. These findings extend beyond the specific example of CoAl-LDH, emphasizing the crucial importance of selective cation leaching, recrystallization, and morphological restructuring, since these processes play a key role not only in designing advanced multi-element materials but also in understanding the complex nanoscale mechanisms that govern the activation and durability of practical electrocatalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067176 | PMC |
http://dx.doi.org/10.1002/smll.202412351 | DOI Listing |
ACS Nano
September 2025
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R. China.
Ni-Fe (oxy)hydroxides are among the most active oxygen evolution reaction (OER) catalysts in alkaline media. However, achieving precise control over local asymmetric Fe-O-Ni active sites in Ni-Fe oxyhydroxides for key oxygenated intermediates' adsorption steric configuration regulation of the OER is still challenging. Herein, we report a two-step dealloying strategy to fabricate asymmetric Fe-O-Ni pair sites in the shell of NiOOH@FeOOH/NiOOH heterostructures from NiFe Prussian blue analogue (PBA) nanocubes, involving anion exchange and structure reconstruction.
View Article and Find Full Text PDFDalton Trans
September 2025
Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.
The main bottleneck faced by traditional hydrogen production technology through water electrolysis lies in the high energy consumption of the anodic oxygen evolution reaction (OER). Combining the thermodynamically favorable ethanol oxidation reaction (EOR) with the hydrogen evolution reaction provides a promising route to reduce the energy consumption of hydrogen production and generate high value-added products. In this study, a facile method was developed for nickel oxyhydroxide (NiOOH) fabrication.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China.
The faradaic efficiency of the electro-synthesis of ammonia using the nitrate reduction reaction (NORR) relies on an electrocatalyst to hydrogenate NO and simultaneously suppress the hydrogen evolution reaction (HER). Due to the formation of a heterostructure, the faradaic efficiency of g-CN/BiO reaches 91.12% at -0.
View Article and Find Full Text PDFNat Prod Rep
September 2025
Royal Botanic Gardens Kew, Richmond, London, TW9 3AE, UK.
Covering upto 2025Rotenoids are angular hybrid isoflavonoids mainly characterized by an additional six-membered ring between the B and C rings of flavonoids. The extra ring introduces further chemical diversity to the densely substituted precursors, isoflavonoids, making rotenoids a significant group of compounds within the plant kingdom. Early biosynthesis studies by L.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States.
The development of efficient and economical oxygen evolution reaction (OER) catalysts is highly desired, and cobalt-based nanomaterials are promising candidates. In this work, we tackle one key question for cobalt-assisted photocatalytic OER: What is the true active species of Co(OH) for the photocatalytic OER? Hence, we investigated photocatalytic OER on nanostructured Co(OH) and CoO for comparison. We found that there was a significant transformation of Co(OH) during the photocatalytic process with a [Ru(bpy)]/SO buffer.
View Article and Find Full Text PDF