98%
921
2 minutes
20
Successful reproduction depends on the stable germination and growth of the pollen tubes (PT). However, the molecular mechanisms involved in rice PT growth and development remain largely unknown. In a previous study, microarray transcriptome analysis identified 627 genes preferentially expressed in the tricellular and germinating pollen of rice (i.e., Oryza sativa ssp. japonica). To elucidate key genes involved in the gene transfer process facilitated by male gametophytes, we systematically screened T-DNA lines containing disrupted sequences that corresponded to these 627 genes and analyzed the genotypes of heterozygote progeny from 107 T-DNA-indexed lines covering 105 genes. We found that 42 lines exhibited a distorted segregation ratio among the wild-type (WT), heterozygote (HT), and homozygote (HM) genotypes, which deviated from the expected Mendelian ratio of 1:2:1 (WT:HT:HM). Further characterization using CRISPR/Cas9 mutants revealed that knockout mutants of certain genes that exhibited segregation distortion in the T-DNA insertion region were completely sterile. Moreover, even when T-DNA insertion lines followed Mendelian segregation patterns, sterility could be induced by simultaneously mutating functionally redundant genes, thereby overcoming genetic compensation. Interestingly, although some T-DNA insertion lines exhibited segregation ratios approximating 1:1:0, the corresponding CRISPR/Cas9 mutants produced homozygous seeds and showed partial sterility. Partial sterility suggests that despite mutant pollen grains being less competitive than WT pollen, they retain their fertilization potential under relaxed competition from WT pollen. Beyond mutant-based analysis, transcriptomic profiling of sterile mutant lines provided additional insight into the regulatory relationship between key germination regulators and the 105 target genes studied here. Overall, this study demonstrates the effectiveness of a multi-pronged strategy to accelerate the identification of defective phenotypes using mutant studies and provides valuable genetic resources for inducing novel male sterility in rice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12131703 | PMC |
http://dx.doi.org/10.1111/jipb.13900 | DOI Listing |
Plant Biotechnol J
September 2025
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
Agrobacterium-mediated T-DNA integration into plant genomes represents a cornerstone for transgenic expression in plant basic research and synthetic biology. However, random T-DNA integration can disrupt essential endogenous genes or compromise transgene expression, stressing the need for targeted integration strategies. Here we explored CRISPR-aided targeted T-DNA integration (CRISTTIN) in Arabidopsis, leveraging CRISPR-induced double-strand breaks (DSBs) to facilitate precise T-DNA insertion.
View Article and Find Full Text PDFBMC Genomics
September 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro‑Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
Background: Plants have evolved the ability to produce specialized metabolites as a defense mechanism against biotic and abiotic stressors, with flavonoid-mediated defense responses playing a crucial role in this process. Diverse flavonoids are present in various rice-grown resources, and they confer tolerance to different environmental conditions, including high temperature stress. Elucidating the differences in these flavonoids is essential for breeding improved rice varieties with enhanced tolerance to adverse environments.
View Article and Find Full Text PDFRice (N Y)
August 2025
Departmment of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.
Sheath rot disease, caused by Sarocladium oryzae, is a severe problem in rice cultivation and can result in significant yield loss worldwide. In this study, we analyzed the function of LOC_Os09G23084, encoding an endoglucanase-1 precursor, through gene overexpression. Two single T-DNA insertion homozygous overexpression lines, 1-16 S and 4-10 S, derived from Oryza sativa cv.
View Article and Find Full Text PDFRice (N Y)
August 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
Interspecific and intersubspecific hybrid rice have demonstrated substantial heterosis and increased yield potential, yet they are frequently restricted by complex hybrid sterility (HS). Gene regulation has primarily been used to explain the genetic mechanism of HS; however, it is still unclear how cryptic chromosomal structural hybridity results in heterozygote semi-sterility at the molecular level. This study identified a T-DNA-mediated heterozygous mutant mfss (male and female semi-sterility) in rice, of which the self-pollinated progeny would produce heterozygous semi-sterile mutant plants and homozygous fertile mutant plants, mm, with homozygous in inserted T-DNA.
View Article and Find Full Text PDFMol Plant Pathol
August 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
Phytophthora species are oomycetes that cause significant losses in agricultural production and damages to natural ecosystems. Phytophthora pathogens secrete numerous cytoplasmic effectors that target distinct cellular components to suppress host immunity and facilitate pathogen colonisation. The identification of their host targets is crucial for deciphering the mechanisms they employ to modulate host immunity.
View Article and Find Full Text PDF