Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Current research on the antifouling mechanisms of "electrically neutral" polymer brushes predominantly emphasizes thermodynamically unfavorable short-range interactions. However, our study reveals the critical importance of long-range interactions. By utilizing zwitterionic poly(carboxybetaine methacrylate) (PCBMA) and nonionic poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) brushes as model systems, we employed total internal reflection microscopy (TIRM) to directly measure interactions with contaminants. Surprisingly, even seemingly neutral polymers exhibit significant electrostatic interactions with nearby contaminants─a fact that has been largely overlooked in this field. Our findings challenge the prevailing assumption of charge absence on surfaces grafted with antifouling polymer brushes and investigate how external stimuli (such as ionic strength and polymer conformation) affect these long-range interactions. In conclusion, this study presents a novel approach to exploring long-range interactions near polymer-grafted surfaces, offering valuable insights for the development of antifouling materials and biomedical applications in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12004931PMC
http://dx.doi.org/10.1021/acsmacrolett.5c00043DOI Listing

Publication Analysis

Top Keywords

long-range interactions
16
polymer brushes
12
interactions
7
direct measurements
4
measurements overlooked
4
long-range
4
overlooked long-range
4
interactions zwitterionic
4
zwitterionic nonionic
4
polymer
4

Similar Publications

Quantum simulations of many-body systems are among the most promising applications of quantum computers. In particular, models based on strongly correlated fermions are central to our understanding of quantum chemistry and materials problems, and can lead to exotic, topological phases of matter. However, owing to the non-local nature of fermions, such models are challenging to simulate with qubit devices.

View Article and Find Full Text PDF

SARS-CoV E protein couples asymmetric leaflet thickness and curvature deformations.

Biochim Biophys Acta Biomembr

September 2025

Center for Computational and Integrative Biology (CCIB), Rutgers-Camden, Camden, NJ, United States of America; Department of Physics, Rutgers-Camden, Camden, NJ, United States of America. Electronic address:

The Envelope protein (E protein) of SARS-CoVs 1 and 2 has been implicated in the viral budding process and maintaining the spherical shape of the virus, but direct evidence linking the protein to long-range membrane deformation is still lacking. Computational predictions from molecular simulation have offered conflicting results, some showing long-range E-induced membrane curvature and others showing only local deformations. In the present study, we determine the mechanism driving these deformations by modulating the degree of hydrophobic mismatch between protein and membrane.

View Article and Find Full Text PDF

Inescapable Anisotropy of Nonreciprocal XY Models.

Phys Rev Lett

August 2025

Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, 75005 Paris, France.

We investigate nonreciprocal XY (NRXY) models defined on two-dimensional lattices in which the coupling strength of a spin with its neighbors varies with their position in the frame defined by the current spin orientation. As expected from the seminal work of Dadhichi et al., [Nonmutual torques and the unimportance of motility for long-range order in two-dimensional flocks, Phys.

View Article and Find Full Text PDF

Aluminum (Al) is a cost-effective alternative to noble metals for plasmonics, particularly in the ultraviolet (UV) and visible regions. However, in the near-infrared (NIR) region, its performance is hindered by interband transitions (IBTs) at around 825 nm, leading to increased optical losses and broad resonances. Surface lattice resonances (SLRs) offer a promising solution by enhancing the plasmonic quality factor (-factor) through coherent coupling of localized surface plasmon (LSP) modes with Rayleigh anomalies.

View Article and Find Full Text PDF