Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The electrocatalytic carbon dioxide reduction reaction (CORR) can be significantly improved by the presence of alkali metal cations, yet the underlying mechanisms remain unclear. In this study, we developed clean Cu nanoparticles with tailored curvatures to modulate the local concentration of K cations and investigate their effects on CORR. The adjustment of particle curvature allows for direct control over cation concentrations within the electrochemical double layer, enabling broad-range modulation of cation concentration without concerns regarding solubility limitations or anionic interference. By tuning the plasmonic modes of the Cu particles, we achieved highly sensitive surface-enhanced Raman spectroscopy (SERS) under resonant conditions, facilitating in situ tracking of the short-lived intermediates in CORR. Our results revealed that K cations not only stabilize *COOH and *CO species and reduce the reaction energy barrier for C─C coupling but also increase the surface coverage of *CO, particularly for bridge *CO configurations. Furthermore, our findings suggest that the interactions between bridge *CO and atop *CO play a crucial role in facilitating the C─C coupling, offering insights for the design of electrocatalysts for CORR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202409569 | DOI Listing |