Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Mechanical mismatches at the microscale between bioelectronics and cells severely hinder the successful acquisition of high-quality and stable electrophysiological signals. Room-temperature liquid metals (EGaIn), which possess a near-zero Young's modulus, present a promising material for achieving stable conformal contact with biological tissues. However, the fluidity of liquid metals limits the elastic encapsulation of the patterned circuits with cellular resolution. To address this challenge, we develop a bilayer microfluidics-based method to elastically encapsulate a high-resolution electrode array (20 μm) within several minutes (<3 min). The alignment-free method overcomes the limitations of packaging polymers and high-resolution aligners, enabling cost-effective, scalable manufacturing for devices. These electronics exhibit excellent wear resistance, high flexibility (>300% strain), and excellent biocompatibility, facilitating long-term stable interfacing with cardiomyocytes and enabling the collection of high-quality (∼30 dB) cell field potential signals as well as epicardial signals (∼42 dB) from living rat models. This rapid and straightforward encapsulation approach improves the precision and integration of liquid metal-based flexible electronics, holding the promise of high-resolution monitoring and treatment, such as electrophysiological mapping, electrical stimulation, and other therapeutic interventions at the cellular levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c18309 | DOI Listing |