A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Mechanism-based approach in designing patient-specific combination therapies for nonsense mutation diseases. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Premature termination codon (PTC) diseases account for ∼12% of all human disease mutations. Although there are no FDA approved treatments for increasing PTC readthrough, one readthrough inducing drug, ataluren, has conditional approval for treatment of Duchenne muscular dystrophy elsewhere. Ataluren displays low toxicity in clinical trials for treatment of PTC diseases, but its therapeutic effects are inconsistent. The messenger RNA (mRNA) sequence context of a PTC is a major determinant of PTC readthrough efficiency. We have shown that ataluren stimulates readthrough exclusively by competitively inhibiting release factor complex (RFC) catalysis of translation termination. Here, using an in vitro reconstituted system, we demonstrate that PTC identity and the immediately adjacent mRNA sequence contexts modulate RFC activity in terminating peptide elongation. Such modulation largely determines the effectiveness of ataluren in stimulating readthrough, whether added alone or in combination with either the aminoglycoside G418 or an anticodon edited aa-tRNA, which stimulate readthrough by mechanisms orthogonal to that of ataluren. Our results suggest a potential rationale for the variability of ataluren effectiveness in stimulating readthrough. We hypothesize that patients harboring a PTC mutation within a sequence context promoting strong interaction with RFC will be resistant to ataluren, but that ataluren treatment will be more effective for patient sequences conferring weaker interaction with RFC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954524PMC
http://dx.doi.org/10.1093/nar/gkaf216DOI Listing

Publication Analysis

Top Keywords

ptc diseases
8
ptc readthrough
8
ataluren
8
mrna sequence
8
sequence context
8
stimulating readthrough
8
interaction rfc
8
ptc
7
readthrough
7
mechanism-based approach
4

Similar Publications