A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Design, synthesis, and antitumor activity of stapled peptide inhibitors targeting the RAS-RAF interactions. | LitMetric

Design, synthesis, and antitumor activity of stapled peptide inhibitors targeting the RAS-RAF interactions.

Eur J Med Chem

School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; Department of Burn Plastic Surgery, The Second Affiliated Hospital of Second Military Medical University, Shanghai, 200003, PR China. Electronic address:

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

RAS-RAF interactions play a vital role in the RAS-RAF-MEK-ERK signaling pathway, significantly regulating cell proliferation, differentiation, and survival. Some small molecule inhibitors targeting various components of this pathway, such as MRTX849 and AMG 510, have been introduced for clinical application. However, peptide-based drugs encounter several challenges, such as poor cell permeability, low biological stability, and rapid in vivo clearance, which hinder their application. Herein, based on co-crystal complex structures and RAS-RAF interaction hotspots, we identified four linear peptides-Raf-0 to Raf-2 and CRD-0-derived from the α-helical regions of the RAS-binding domain (RBD) and the cysteine-rich domain (CRD) of CRAF. Raf-1 was selected for further modification using a hydrocarbon stapling strategy, capping it with stearic acid at the N-terminal due to its highest binding affinity in the SPR assay. As a result, Sraf-2-1 and Sraf-7-1 bound to KRAS with K values of 3.56 μM and 2.62 μM, respectively, demonstrating robust anticancer activity in the CCK8 assay. Additionally, Sraf-2-1 and Sraf-7-1 reduced AKT phosphorylation, induced cancer cell apoptosis in a concentration-dependent manner, and effectively inhibited cancer cell migration, showing improved α-helix stability and cell permeability. In summary, our findings indicate that the hydrocarbon stapling strategy and stearic acid tagging enhanced the therapeutic potential of peptide inhibitors, offering methods for targeting RAS in cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2025.117568DOI Listing

Publication Analysis

Top Keywords

peptide inhibitors
8
inhibitors targeting
8
ras-raf interactions
8
cell permeability
8
hydrocarbon stapling
8
stapling strategy
8
stearic acid
8
sraf-2-1 sraf-7-1
8
cancer cell
8
cell
5

Similar Publications