98%
921
2 minutes
20
Doping transitional metals into colloidal nanocrystals can significantly modify their excited-state dynamics and enrich their optical and magneto-optical functionalities. Here we synthesize Mn-doped CdSe nanoplatelets and investigate their excited-state dynamics and light-emission mechanisms. Extensive characterizations suggest that Mn ions are situated near the surface-region of the nanoplatelets. The atomic thinness of nanoplatelets allows for a strong host-dopant coupling, manifested as broadband charge-transfer absorption and emission (near 575 nm) between the host valence band and the dopant -orbitals. Photoexcitation of the host leads to rapid (a few ps) electron transfer from the conduction band to the -orbitals, and the resultant charge-transfer state decays within a few ns not only through charge-transfer emission but also generating an excited-state species (likely Mn-Mn dimer) with a characteristic near-infrared emission. These novel photophysics and photochemistry uncovered for quasi-two-dimensional Mn-doped nanocrystals form the basis for optical, magneto-optical, and energy conversion applications using such materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.5c01269 | DOI Listing |
Chem Mater
August 2025
Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
The growth of atomically flat CdSe nanoplatelets (NPLs) thicker than 5 monolayers (ML) remains a major challenge in colloidal semiconductor synthesis, particularly for core/crown heterostructures. Here we report the successful synthesis of zinc-blende CdSe NPLs with unprecedented thicknesses of 6 and 7 ML, exhibiting sharp photoluminescence at 579 and 596 nm, respectively. We demonstrate that these thick NPLs can serve as cores for CdSe/CdS core/crown heterostructures, confirmed by lateral size expansion and the emergence of characteristic CdS absorption features.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Chemistry, Ghent University, 9000 Gent, Belgium.
Optical amplification in CdSe nanoplatelets (NPLs) has been linked to biexcitons with a large binding energy Δ, preventing dissociation at room temperature. While the exciton binding energy Δ has been studied extensively, Δ in colloidal NPLs is typically inferred using the 2D Haynes rule, Δ = 0.228·Δ.
View Article and Find Full Text PDFJ Phys Chem Lett
August 2025
School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
Alloyed semiconductor nanoplatelets (NPLs) exhibit thickness- and composition-dependent luminescence bands with relatively narrow luminescence line widths, thus garnering significant attention for applications in LED and laser devices. Although understanding Auger recombination is crucial for these applications, the influence of the chemical composition of alloyed NPLs remains unclear. In this study, CdZnSe NPLs with various chemical compositions were synthesized, and their Auger recombination was investigated.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2025
Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India.
Colloidal nanoplatelets are atomically flat quasi-two-dimensional colloidal particles of semiconductors which have been a topic of intense study for their optical properties and potential applications. Like for the previous generation quantum dots, the photostability of nanoplatelets remains a topic of concern that must be understood to reliably use them in devices. We have found that the photoluminescence intensity from CdSe nanoplatelets on continuous laser excitation displays a significant rise (photobrightening) over time at temperatures above 215 K.
View Article and Find Full Text PDFNanoscale Adv
August 2025
Department of Physics, Jackson State University Jackson MS 39217 USA.
The influence of an external uniform in-plane electrostatic field on the exciton states in a CdSe nanoplatelet (NPL) is considered theoretically. By considering the jump in permittivity at the NPL-medium boundary, the energy spectrum and spatial distribution of the probability density for free carriers and 2D excitons in the presence of an in-plane electric field are obtained. The Stark shifts for a 2D exciton are calculated, and it is shown that for fields above a certain critical value, the exciton decays into an electron and hole pair.
View Article and Find Full Text PDF