Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Simultaneous quantification of multiple heavy metal ions remains a significant challenge in electrochemical methods, as complex high-throughput data from signal interference cannot be accurately analyzed through individual expertise and calibration curves. In this study, machine learning techniques were introduced to co-detect Cd(II) and Cu(II), with their electrochemical interference mechanisms explored on highly active CoP/CoP heterostructures. The random forest (RF) model initially identified key feature variables in response currents, which were subsequently input into the convolutional neural network (CNN) to uncover the relationship between electrochemical signals and ion concentrations, demonstrating excellent reliability with R values of 0.996 for both Cd(II) and Cu(II). The root mean square error (RMSE) values for Cd(II) and Cu(II) were 0.0177 and 0.0206 μM, respectively, indicating high predictive accuracy. The experiments and theory calculations revealed that Cu(II) preferentially bonded with P sites over Cd(II). Enhanced electron transfer from Co to P atoms and weakened Cu-P bonds facilitated Cu(II) reduction and desorption from CoP/CoP, thereby boosting electrochemical signals, while Cd(II) signals were inhibited due to active site loss. Herein, the integration of machine learning provides robust support for simultaneous detection of multiple analytes, accelerating the practical application of electrochemical methods in environmental monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.138030 | DOI Listing |