98%
921
2 minutes
20
The detection of specific protein biomarkers holds significant potential for the early diagnosis of colorectal cancer (CRC). However, the accurate quantification of low-abundance proteins in serum presents a major challenge due to factors such as limited sensitivity and the complexity of the required methodologies. In this work, we established a universal CRISPR/Cas biosensing platform by integrating novel photosensitive nanoprobes (DA/PL@Cu NPs) and CRISPR/Cas12 system (DPC-Cas) for the highly sensitive, specific and user-friendly detection of angiopoietin-like protein 2 (ANGPTL2). The DA/PL@Cu NPs serve as a critical component in the transduction of protein recognition information into nucleic acid amplification events to produce Cas12a activators. The DPC-Cas biosensor integrates DA/PL@Cu NPs-assisted amplification with Cas12a self-amplification, enabling ultrasensitive detection of ANGPTL2 at concentrations as low as 20.00 pg/mL. The proposed DPC-Cas biosensor successfully detected ANGPTL2 in serum, demonstrating significant potential for the early diagnosis of CRC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2025.128010 | DOI Listing |
Org Lett
September 2025
State Key Laboratory of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
Herein, we report that a novel and efficient bifunctional reagent, benzophenonoxime -(CF) thiocarbonate (BOST), is easily synthesized and successfully applied to the 1, ( ≥ 2)-trifluoromethylthioamination of alkenes under photocatalytic energy transfer conditions. This study not only achieves the radical trifluoromethylthioamination of olefins for the first time but also provides structurally important and diverse SCF-featured amino acid esters and amino nitriles that were previously inaccessible.
View Article and Find Full Text PDFJ Neurooncol
September 2025
Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Purpose: Glioblastoma (GBM) remains one of the most aggressive primary brain tumors with poor survival outcomes and a lack of approved therapies. A promising novel approach for GBM is the application of photodynamic therapy (PDT), a localized, light-activated treatment using tumor-selective photosensitizers. This narrative review describes the mechanisms, delivery systems, photosensitizers, and available evidence regarding the potential of PDT as a novel therapeutic approach for GBM.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China.
Corrole-based photosensitizers show great potential for tumor photodynamic therapy (PDT). While their photodynamic activity has been extensively studied at the cellular level, evaluation in mouse xenograft models remains challenging due to prolonged experimental timelines, complex drug administration, and high costs. To address these limitations, we developed a novel hepatocellular carcinoma model using wild-type AB zebrafish embryos as a xenograft platform.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan Un
Recently, a variety of stimulus-responsive hydrogel platforms have been developed, specifically designed to respond to changes in physiological signals within the disease microenvironment. However, due to the restricted regulation of drug release behavior in vivo by such hydrogel systems, the precise control of drug release kinetics has not been achieved. Therefore, developing precise drug delivery platforms that enable programmable and "on-off" delivery remains a challenge in this field.
View Article and Find Full Text PDFChempluschem
September 2025
Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China.
Enhancing singlet oxygen generation for photosensitizers in aqueous media can markedly improve the efficacy of photochemical therapy. Herein, triblock polymers composed of pyropheophorbide a photosensitizer (PPa), polyethylene glycol, and phospholipid are synthesized. These triblock polymers, driven by hydrophilic-hydrophobic interactions, spontaneously fold into an amphiphilic structure and further self-assemble into nanomicelles.
View Article and Find Full Text PDF