Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Quercetin is a flavonoid commonly found in various fruits, vegetables, and grains. Studies have demonstrated that quercetin may help protect neuronal cells from damage caused by neurotoxins associated with Parkinson's disease, however, the underlying mechanism remains unclear.

Aim: The current study aimed to investigate the neuroprotective effects of quercetin in MPTP-induced Parkinson's disease mouse models and elucidate its mechanistic role in modulating the PI3K/Akt/GSK-3β signaling pathway.

Materials And Methods: Male C57BL/6 mice were divided into control, MPTP, quercetin, and MPTP + quercetin groups. The protective effects of quercetin on Parkinson's disease in mice were evaluated using animal behaviour analysis, histopathological examination, and immunofluorescence staining. Subsequently, network pharmacology was utilized to determine the primary target sites of quercetin in Parkinson's disease. Finally, western blotting and molecular docking techniques were applied to validate the identified targets.

Results: Quercetin significantly improved motor deficits in MPTP mice, reduced neuronal atrophy, and preserved TH dopaminergic neurons. Western blotting analysis revealed quercetin upregulated anti-inflammatory IL-10 (p < 0.01) and TGF-β (p < 0.01) while suppressing pro-inflammatory IL-1β (p < 0.01) and iNOS (p < 0.01). It activated the PI3K/Akt/GSK-3β pathway by increasing phosphorylation of PI3K (p < 0.01), Akt (p < 0.01), and GSK-3β (p < 0.01). Quercetin also elevated anti-apoptotic Bcl-2 (p < 0.01) and reduced pro-apoptotic Bax (p < 0.01) and Caspase-9 (p < 0.01). Molecular docking confirmed strong binding between quercetin and PI3K/Akt/GSK-3β (binding energies: -6.44 to -5.24 kcal/mol).

Conclusion: Quercetin alleviates Parkinson's disease pathology by inhibiting neuroinflammation, reducing apoptosis, and activating the PI3K/Akt/GSK-3β pathway. These findings underscore its potential as a multi-target therapeutic agent for Parkinson's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354563PMC
http://dx.doi.org/10.1007/s10787-025-01712-2DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
20
quercetin
9
mptp-induced parkinson's
8
effects quercetin
8
quercetin parkinson's
8
western blotting
8
parkinson's
5
disease
5
quercetin protects
4
protects neuronal
4

Similar Publications

Background: Gait impairment in Parkinson's disease (PD) occurs early and pharmaceutical interventions do not fully restore this function. Visual cueing has been shown to improve gait and alleviate freezing of gait (FOG) in PD. Technological development of digital laser shoe visual cues now allows for visual cues to be used continuously when walking.

View Article and Find Full Text PDF

Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.

View Article and Find Full Text PDF

Background: Neurological diseases such as stroke or Parkinson's disease are often accompanied by weakening or loss of proprioception, which seriously affects the motor control ability of the patients. However, proprioception rehabilitation is challenging due to the pain caused by impaired joints and the hard efforts that patients have to make during training. This study investigated the cross-transfer effect of short-term visuomotor training to the untrained wrist from the trained wrist, from both views of behavioral results and brain activity analyses.

View Article and Find Full Text PDF

Neuroinflammation has emerged as a central and dynamic component of the pathophysiology underlying a wide range of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Far from being a secondary consequence of neuronal damage, inflammatory processes (mediated by microglia, astrocytes, peripheral immune cells, and associated molecular mediators) actively shape disease onset, progression, and symptomatology. This review synthesizes current knowledge on the cellular and molecular mechanisms that govern neuroinflammatory responses, emphasizing both shared and disease-specific pathways.

View Article and Find Full Text PDF