Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: This study aims to develop an intranasal (IN) delivery system for glioblastoma multiforme (GBM) management using repurposed superparamagnetic iron-oxide (SPION) loaded with atorvastatin (ATO)-nanostructured lipid carrier (NLC). : Emulsification and ultrasonication were used to formulate ATO-NLCs, and the best formula was loaded with SPION to make the final atorvastatin/superparamagnetic iron oxide-loaded nanostructured lipid carrier (ASN) formulation. Entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and drug release after 6 h (Q6h) were evaluated for NLCs. ASN was tested for cytotoxicity on T98G cancer cells, and the cell cycle was examined to determine cell death. Furthermore, the ability of the optimal formulation to suppress the levels of inflammatory biomarkers was investigated in Lipopolysaccharide (LPS)-induced inflammation. The brain-targeting behavior of IN-ASN was visualized in rabbits via confocal laser scanning microscopy (CLSM). : The optimum NLC exhibited a spherical shape, EE% of 84.0 ± 0.67%, PS of 282.50 ± 0.51 nm, ZP of -18.40 ± 0.15 mV, and Q6h of 89.23%. The cytotoxicity of ASN against cancer cells was 4.4-fold higher than ATO suspension, with a 1.3-fold increment in cell apoptosis. ASN showed significantly reduced pro-inflammatory biomarkers (IL-β, IL-6, TNF-α, TLR4, NF-қB), whereas CLSM revealed enhanced brain delivery with no observed histopathological nasal irritation. The in silico analysis demonstrated enhanced ATO-ADME (absorption, distribution, metabolism, and excretion) properties, while the network pharmacology study identified 10 target GBM genes, among which MAPK3 was the most prominent with a good binding score as elucidated by the simulated docking study. : These findings may present ATO/SPION-NLCs as significant evidence for repurposing atorvastatin in the treatment of glioblastoma multiforme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944838PMC
http://dx.doi.org/10.3390/ph18030421DOI Listing

Publication Analysis

Top Keywords

intranasal delivery
8
network pharmacology
8
pharmacology study
8
glioblastoma multiforme
8
lipid carrier
8
cancer cells
8
enhanced intranasal
4
delivery atorvastatin
4
atorvastatin superparamagnetic
4
superparamagnetic iron-oxide-loaded
4

Similar Publications

Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.

View Article and Find Full Text PDF

Therapeutic potential of small peptides in Alzheimer's disease: Advances in memory restoration and targeted delivery systems.

Neuropeptides

September 2025

Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Despite extensive research into Alzheimer's disease (AD), few therapeutic strategies have successfully addressed its core pathology at the synaptic level. Small peptides represent a promising class of therapeutic agents capable of modulating key molecular pathways involved in amyloid toxicity, tau hyperphosphorylation, and synaptic degeneration. Their unique ability to cross biological barriers, interact with intracellular targets, and be modified for enhanced stability positions them as viable candidates for next-generation treatments targeting cognitive decline in AD.

View Article and Find Full Text PDF

Exosome-mediated co-delivery of superoxide dismutase and chondroitinase ABC for multiple sclerosis therapy.

Int J Biol Macromol

September 2025

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China; Center for Supramolecular Chemical Biology, Jilin University, Changchun, 130012, China. Electronic address:

Multiple sclerosis is an autoimmune demyelinating disease, and its effective treatment is a great challenge. As a typical animal model for studying multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) is characterized by inflammation, demyelination, gliosis and axonal loss. Thus, simultaneous regulation of neuroinflammation and remyelination may be a useful strategy against EAE.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a major life-threatening event. In addition to neurological deficits, it can lead to long-term impairments of cognitive function. The vagus nerve (VN) provides a direct communication conduit between the central nervous system and the periphery, and modulation of the inflammatory reflex via electrical stimulation of the vagus nerve (VNS) shows efficacy in ameliorating pathology in neurodegenerative diseases.

View Article and Find Full Text PDF

Grueneberg Ganglion: An Unexplored Site for Intranasal Drug Delivery in Alzheimer's Disease.

ACS Chem Neurosci

September 2025

College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21912, Republic of Korea.

Neurological disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis pose significant challenges for treatment. Reasons for the difficulty in finding cures for these conditions include complications in early diagnosis, progressive and irreversible neuronal damage, and the presence of the blood-brain barrier (BBB), which hinders the delivery of drugs to the affected areas of the brain. Intranasal (INL) drug administration has increasingly gained popularity among researchers for targeting neurological conditions, because of its ability to bypass the BBB.

View Article and Find Full Text PDF