Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Salt lake brine contains abundant rubidium resources; however, the separation of rubidium from brine with a high K content remains a significant challenge in metallurgical processes and materials science. In this study, PAN-KCuFC-PEG particles were synthesized by phase transformation, using hydrophilic polyacrylonitrile (PAN) as the skeleton structure, potassium cupric ferricyanide (KCuFC) as the active component and water-soluble polymer polyethylene glycol (PEG) as the pore regulator. Characterization revealed that the addition of PEG increased the pore volume of PAN-KCuFC-PEG by 63% and the BET surface area by 172%. KCuFC powder was uniformly dispersed in PAN-KCuFC-PEG, and its crystal structure remained stable after loading. In static adsorption experiments, the maximum adsorption capacity of PAN-KCuFC-PEG for Rb reached 190 mg/g. The adsorption behavior followed a pseudo-second-order kinetic model, with the rate jointly controlled by external diffusion, intraparticle diffusion, and chemical reaction. In the column experiment, PAN-KCuFC-PEG was used to adsorb Qarhan Salt Lake brine (K: 26,000 mg/L, Rb: 65 mg/L). NHCl was employed for elution and desorption of PAN-KCuFC-PEG. During the adsorption-desorption process, the separation factor between Rb and K reached 160, the desorption rate reached 96.6%, and the overall yield was 68.3%. The enrichment and separation of Rb were successfully achieved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944588 | PMC |
http://dx.doi.org/10.3390/molecules30061273 | DOI Listing |