A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effect of Additive Friction Stir Deposition Processing on the Microstructure and Mechanical Properties of 1045 Steel. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Using additive friction stir deposition (AFSD), the poor weldability of 1045 steel can be solved, facilitating the efficient and high-performance additive manufacturing of its components. This study selected spherical 1045 steel powder and investigated key factors influencing mechanical properties, including deposition temperature, tool rotational rate, and axial force. The results showed that dynamic recrystallization (DRX) occurred in AFSD 1045 steel, which produced randomly oriented fine equiaxed grains with a size range of 1-3 µm and was sensitive to changes in tool rotational rate and axial force. The AFSD 1045 steel, with a maximum surface hardness of 477.2 HV, ultimate tensile strength of 1061.9-1172.3 MPa, and elongation of 8.6-19.0%, has superior overall mechanical properties compared with other forming processes. Moreover, by analyzing tensile fracture morphology, geometrically necessary dislocation (GND) density, and coincidence site lattice (CSL) boundary distribution characteristics, the strengthening mechanism in AFSD 1045 steel was discussed. The research findings serve as a reference for optimizing the AFSD process for 1045 steel and supply a new alternative for joining and manufacturing this material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943858PMC
http://dx.doi.org/10.3390/ma18061257DOI Listing

Publication Analysis

Top Keywords

1045 steel
28
mechanical properties
12
afsd 1045
12
additive friction
8
friction stir
8
stir deposition
8
tool rotational
8
rotational rate
8
rate axial
8
axial force
8

Similar Publications