Direct Detection and Quantification of Aqueous Proteins via a Fluorescent Probe Through the Use of Fluorophore-Induced Plasmonic Current.

Biosensors (Basel)

Department of Chemistry and Biochemistry, Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt St, Baltimore, MD 21202, USA.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report on the recent advancements in the sensing of proteins, both directly and with the use of a fluorescent probe, through the use of Fluorophore-Induced Plasmonic Current (FIPC). FIPC are a phenomenon where a fluorophore or excited state species is in close proximity to a plasmonically active metal nanoparticle film (MNF), and the excited state is able to couple to the particle, ultimately leading to enhanced spectroscopic properties. This phenomenon is similar to the well-reported metal-enhanced fluorescence (MEF) phenomenon, wherein the coupled complex produces an enhanced fluorescence emission and a shorter lifetime. However, if the particles themselves are sufficiently spaced and oriented, an induced current can transfer from each discreet particle to the next, creating a detectable current across the film. This detectable current has a magnitude that is proportional to the fluorescent properties of the species that produced it, and can be affected by the polarization of the excitation source; the spacing and size of the particles on the film; the overlap between the spectral properties of the film and the species; as well as externally applied voltages and currents. In this study, we examined whether it is possible to detect protein species, directly due to both their intrinsic fluorescent and absorptive properties, and how that compares to commercially available protein detection probes, in a similar manner to prior work by our group addressing analyte detection via fluorescent probes. This FIPC-based detection technique is a novel method that has not been used for the detection of proteins, and the use of this method could expand the dynamic sensing range of first-pass testing, while overcoming some of the physical limitations on the upper limit of detection of both absorption spectroscopy and fluorescence emission spectroscopy. Our experiments sought to highlight the selectivity of FIPC-based detection relative to both fluorescence and absorption spectroscopy, as well as its sensitivity when working with protein analytes. We examined the effects of protein concentration, intrinsic fluorescent properties, and probes, as well as how these techniques compare to traditional analytical techniques used today.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940231PMC
http://dx.doi.org/10.3390/bios15030150DOI Listing

Publication Analysis

Top Keywords

fluorescent probe
8
probe fluorophore-induced
8
fluorophore-induced plasmonic
8
plasmonic current
8
excited state
8
fluorescence emission
8
detectable current
8
fluorescent properties
8
intrinsic fluorescent
8
fipc-based detection
8

Similar Publications

Salmonella Typhimurium (S. Typhimurium) is one of the most common food-borne diseases, highlighted as the top food-borne bacterial pathogen in the world with a low infectious dose (1 CFU) and high mortality rate. It is commonly associated with numerous foods such as dairy products, protein sources (multiple types of meat, poultry, and eggs), and bakery products.

View Article and Find Full Text PDF

Unraveling biomolecular interactions: a comprehensive review of the electromobility shift assay.

Photochem Photobiol Sci

September 2025

Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.

The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.

View Article and Find Full Text PDF

A triphenyl-imidazole end-capped donor-acceptor type potential molecular probe 3 has been designed and synthesized. Probe 3 upon interaction with different classes of metal ions/anions and NPPs displayed high selectivity with CN anion (LOD = 20.42 nM) through fluorescence "turn-Off" response and a naked-eye sensitive visible color change.

View Article and Find Full Text PDF

Supercoiled (Sc) circular DNA, such as plasmids, are essential in molecular biology and hold strong therapeutic potential. However, they are typically produced in Escherichia coli, resulting in bacterial methylations, unnecessary sequences, and contaminants that hinder certain applications including clinical uses. These limitations could be avoided by synthesizing plasmids entirely in vitro, but synthesizing high-purity Sc circular DNA biochemically remains a significant technical challenge.

View Article and Find Full Text PDF

Visualizing intracellular glycine with two-dye and single-dye ratiometric RNA-based sensors.

Nucleic Acids Res

September 2025

Department of Chemistry and Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, United States.

Glycine is an important metabolite and cell signal in diverse organisms, yet tools to visualize intracellular glycine dynamics have not been developed. In this study, diverse and bright RNA-based glycine biosensors were developed by fusing the architecturally complex glycine riboswitch with Broccoli class fluorogenic aptamers. The brightest sensor with the highest activation, glyS, and its two-dye ratiometric counterpart, Pepper-glyS, allowed for visualization of a drug-induced accumulation of endogenous glycine in live Escherichia colicells.

View Article and Find Full Text PDF