Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper presents a complete planner and controller scheme for bipedal robots, designed to enhance robustness against external disturbances. The high-level planner utilizes model predictive control (MPC) to optimize both the foothold location and step duration based on the divergent component of motion (DCM) to increase the robustness of generated gaits. For low-level control, we employ a momentum-based observer capable of estimating external forces acting on both stance and swing legs. The full-body dynamics, incorporating estimated disturbances, are integrated into a weighted whole-body control (WBC) to obtain more accurate ground reaction forces needed by the momentum-based observer. This approach eliminates the dependency on foot-mounted sensors for ground reaction force measurement, distinguishing our method from other disturbance estimation methods that rely on direct sensor measurements. Additionally, the controller incorporates trajectory compensation mechanisms to mitigate the effects of external disturbances. The effectiveness of the proposed framework is validated through comprehensive simulations and experimental evaluations conducted on BRUCE, a miniature bipedal robot developed by Westwood Robotics (Los Angeles, CA, USA). These tests include walking under swing leg disturbances, traversing uneven terrain, and simultaneously resisting upper-body pushes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940329PMC
http://dx.doi.org/10.3390/biomimetics10030189DOI Listing

Publication Analysis

Top Keywords

momentum-based observer
12
whole-body control
8
bipedal robots
8
external disturbances
8
ground reaction
8
robust disturbance
4
disturbance rejection
4
rejection whole-body
4
control
4
control framework
4

Similar Publications

This paper presents a complete planner and controller scheme for bipedal robots, designed to enhance robustness against external disturbances. The high-level planner utilizes model predictive control (MPC) to optimize both the foothold location and step duration based on the divergent component of motion (DCM) to increase the robustness of generated gaits. For low-level control, we employ a momentum-based observer capable of estimating external forces acting on both stance and swing legs.

View Article and Find Full Text PDF

Autonomous Electron Tomography Reconstruction with Machine Learning.

Microsc Microanal

September 2023

Department of Materials Science and Engineering, University of Michigan, 2300 Hayward St, Ann Arbor, MI 48109, USA.

Modern electron tomography has progressed to higher resolution at lower doses by leveraging compressed sensing (CS) methods that minimize total variation (TV). However, these sparsity-emphasized reconstruction algorithms introduce tunable parameters that greatly influence the reconstruction quality. Here, Pareto front analysis shows that high-quality tomograms are reproducibly achieved when TV minimization is heavily weighted.

View Article and Find Full Text PDF

Two-dimensional (2D) magnetic systems possess versatile magnetic order and can host tunable magnons carrying spin angular momenta. Recent advances show angular momentum can also be carried by lattice vibrations in the form of chiral phonons. However, the interplay between magnons and chiral phonons as well as the details of chiral phonon formation in a magnetic system are yet to be explored.

View Article and Find Full Text PDF

This paper presents an integrated framework that integrates the kinematic and dynamic parameter estimation of an irregular object with non-uniform mass distribution for cooperative aerial manipulators. Unlike existing approaches, including impedance-based control which requires expensive force/torque sensors or the first-order-momentum-based estimator which is weak to noise, this paper suggests a method without such sensor and strong to noise by exploiting the decentralized dynamics and sliding-mode-momentum observer. First, the kinematic estimator estimates the relative distances of multiple aerial manipulators by using translational and angular velocities between aerial robots.

View Article and Find Full Text PDF

Immunotherapies have heralded a new era in the cancer treatment. In addition to checkpoint inhibitors, agonistic antibodies against co-stimulatory immune receptors hold the potential to invoke efficient antitumor immunity. Targeting CD137 has gained momentum based on its ability to drive NK- and T-cell-based responses.

View Article and Find Full Text PDF