98%
921
2 minutes
20
Cerebral ischemia-reperfusion injury (CIRI) is a complex pathological process triggered by transient obstruction of blood flow and subsequent reperfusion, ultimately leading to intracellular disturbances such as oxidative stress, inflammatory responses, and programmed cell death. Among the various types of cell death, pyroptosis (an inflammatory kind of regulated cell death) has received increasing attention due to its involvement in key neurovascular unit cells, including endothelial cells, neurons, microglia, and astrocytes. Intriguingly, accumulating evidence demonstrates that non-coding RNAs (ncRNAs), including long non-coding RNAs, microRNAs, and circular RNAs, can modulate multiple stages of pyroptosis in CIRI. This review synthesizes recent findings on the ncRNAs-regulated pyroptosis in CIRI. We highlight the molecular underpinnings of pyroptotic activation following ischemic injury and discuss how ncRNAs shape these mechanisms. By elucidating the interactions between ncRNAs and pyroptosis-related pathways, we intend to present innovative viewpoints for early diagnosis and the development of potential therapeutic strategies to mitigate CIRI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941337 | PMC |
http://dx.doi.org/10.3390/cimb47030141 | DOI Listing |
Biomater Sci
September 2025
Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.
Various cancer therapeutic strategies have been designed for targeting tumor-associated macrophages (TAMs), but TAM reprogramming-based monotherapy is often clinically hindered, likely due to the lack of a coordinated platform to initiate T cell-mediated immunity. Herein, we fabricated reactive oxygen species (ROS)-responsive human serum albumin (HSA)-based nanoparticles (PEG/IL12-IA NPs) consisting of indocyanine green (ICG), arginine (Arg), and interleukin 12 (IL12). Upon laser irradiation, the nanoparticles were found to be able to dissociate, thus facilitating the release of IL12.
View Article and Find Full Text PDFMol Biol Rep
September 2025
School of Pharmacy, Heilongjiang University of Chinese Medicine, NO 24 Heping Road, 150040, Harbin, P. R. China.
Lysosome-dependent cell death (LDCD) is a regulated form of cell death initiated by increased lysosomal membrane permeability, leading to the cytoplasmic release of lysosomal enzymes and subsequent cellular damage. Molecular mechanisms controlling LDCD include lysosomal membrane instability and lysosomal enzyme release, which together lead to cell damage. A more profound comprehension of these underlying mechanisms may reveal new therapeutic targets for diseases associated with lysosomal dysfunction.
View Article and Find Full Text PDFDev World Bioeth
September 2025
Faculty of Law, University of Alberta, Edmonton, Alberta, Canada.
This article explores two complementary strategies for addressing the affordability and access challenges facing advanced therapies. As high development costs and limited market access have led to the withdrawal of several therapies, the article examines how these barriers create 'valleys of death' that prevent innovation from reaching patients. Through the case of Glybera and other examples, it outlines a rehabilitative approach focused on reforming current systems through improved reimbursement schemes, regulatory streamlining, and more efficient manufacturing.
View Article and Find Full Text PDFInflamm Res
September 2025
Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
Cardiovascular diseases (CVDs) are a group of conditions that significantly affect human health and are among the leading causes of death and disability worldwide. Clinical trials and basic research have demonstrated that inflammation plays a pivotal role in the development of CVDs. The inflammasome is a critical component of the innate immune system, involved in various inflammatory responses to pathogens and tissue damage.
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
The First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China.
Ischemic stroke (IS) has high morbidity/mortality with limited treatments. This study screened core copper homeostasis-related genes in IS and validated their function as precise intervention targets. Human IS gene chip data were retrieved from GEO, and copper homeostasis genes from multiple databases.
View Article and Find Full Text PDF