98%
921
2 minutes
20
Background: Chikungunya, and Zika emerged in the 2010s in the Americas, causing simultaneous epidemics with dengue. However, little is known of these Aedes-borne diseases (ABDs) joint patterns and contributors at the population-level.
Methods: We applied a novel Poisson-multinomial spatial model to the registered cases of dengue (n = 291,820), chikungunya (n = 75,913), and Zika (n = 72,031) by municipality in Colombia, 2014-2016. This model estimates the relative risk of total ABDs cases and associated factors, and, simultaneously, the odds of presence and contributors of each disease using dengue as a baseline category. This approach allows us to identify combined characteristics of ABDs, since they are transmitted by the same mosquitoes, while also identifying differences between them.
Results: We found an increased ABDs risk in valleys and south of the Andes, the Caribbean coast, and borders, with temperature as the main contributor (Relative Risk 2.32, 95% Credible Interval, CrI, 2.05-2.64). Generally, dengue presence was the most probable among the ABDs, although that of Zika was greater on Caribbean islands. Chikungunya and Zika were more likely present than dengue in municipalities with less vegetation (Odds Ratio, OR, 0.75, 95%CrI 0.65-0.86, and 0.85, 95%CrI 0.74-0.99, respectively). Chikungunya tended to be present in more socially vulnerable areas than dengue (OR 1.20, 95%CrI 0.99-1.44) and Zika (OR 1.19, 95%CrI 0.95-1.48).
Conclusions: Important differences between the ABDs were identified and can help guide local and context-specific interventions, such as those aimed at preventing cases importation in border and tourism locations and reducing chikungunya burden in socially vulnerable regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934603 | PMC |
http://dx.doi.org/10.1186/s12879-025-10782-0 | DOI Listing |
PLoS Negl Trop Dis
September 2025
Université de Montréal, École de Santé Publique, Montreal, Canada.
Background: Dengue, chikungunya, and Zika present significant public health challenges in Colombia. Spatial studies help clarify the distribution and progression of these diseases over time and location. Objective to describe the spatio-temporal distribution and clustering patterns of dengue, chikungunya, and Zika in Medellín, Colombia, between 2013 and 2021, with the aim of providing baseline spatial intelligence to support future epidemiological and policy-oriented analyses.
View Article and Find Full Text PDFMSMR
August 2025
Australian Defense Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Enoggera, Queensland.
Arboviruses pose a significant health threat to U.S. military personnel deployed in the U.
View Article and Find Full Text PDFBiology (Basel)
August 2025
National Institute of Health Doutor Ricardo Jorge (INSA), Centre for Vectors and Infectious Diseases Research (CEVDI), Avenida da Liberdade n.-5, 2965-575 Águas de Moura, Portugal.
Background: Mosquitoes from the (.) genus are vectors of dengue, Zika, chikungunya, and other arboviruses, posing a significant public health threat. In 2005, was detected for the first time in Madeira Island, Portugal, in the city of Funchal, and has since become established in the region.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Organic Synthesis Laboratory, P. G. Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha, 760007, India.
Herein, we report a visible light-mediated, metal- and photocatalyst-free, green and sustainable synthesis of biologically relevant functionalized benzopyrans by a one-pot, pseudo-multicomponent reaction at room temperature. The notable features of the present protocol include a green and renewable energy source, high yields, easy isolation of the products without performing column chromatography, metal- and photocatalyst-free conditions, room-temperature synthesis, broad substrate scope, environmental friendliness and gram-scale synthesis of the products. In the present study, the benzopyrans are also subjected to molecular docking, which revealed that some benzopyrans are promising potential inhibitors of key nsPs in both Chikungunya and Zika viruses.
View Article and Find Full Text PDFBull Math Biol
August 2025
Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA, USA.
The community composition of vectors and hosts plays a critical role in determining risk of vector-borne disease transmission. Aedes aegypti and Aedes albopictus, two mosquito species that both transmit the viruses that cause dengue, chikungunya, and Zika, share habitat requirements and compete for resources at the larval stage. Ae.
View Article and Find Full Text PDF