98%
921
2 minutes
20
Photosynthetic efficiency (PE) quantifies the fraction of absorbed light used in photochemistry to produce chemical energy during photosynthesis and is essential for understanding ecosystem productivity and the global carbon cycle, particularly under conditions of vegetation stress. However, nearly 60% of the global spatiotemporal variance in terrestrial PE remains unexplained. Here we integrate remote sensing and eco-evolutionary optimality theory to derive key plant traits, alongside explainable machine learning and global eddy covariance observations, to uncover the drivers of daily PE variations. Incorporating plant traits into our model increases the explained daily PE variance from 36% to 80% for C vegetation and from 54% to 84% for C vegetation compared with using climate data alone. Key plant traits-including chlorophyll content, leaf longevity and leaf mass per area-consistently emerge as important factors across global biomes and temporal scales. Water availability and light conditions are also critical in regulating PE, underscoring the need for an integrative approach that combines plant traits with climatic factors. Overall, our findings demonstrate the potential of remote sensing and eco-evolutionary optimality theory to capture principal PE drivers, offering valuable tools for more accurately predicting ecosystem productivity and improving Earth system models under climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41477-025-01958-2 | DOI Listing |
Appl Microbiol Biotechnol
September 2025
School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.
Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.
View Article and Find Full Text PDFCurr Genet
September 2025
Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, 180001, India.
Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
The German Federal Ex Situ Genebank for Agricultural and Horticultural Crops (IPK) harbours over 3000 pea plant genetic resources (PGRs), backed up by corresponding information across 16 key agronomic and economical traits. The unbalanced structure and inconsistent format of this historical data has precluded effective leverage of genebank accessions, despite the opportunities contained in its genetic diversity. Therefore, a three-step statistical approach founded in linear mixed models was implemented to enable a rigorous and targeted data curation.
View Article and Find Full Text PDFNat Prod Rep
September 2025
Royal Botanic Gardens Kew, Richmond, London, TW9 3AE, UK.
Covering upto 2025Rotenoids are angular hybrid isoflavonoids mainly characterized by an additional six-membered ring between the B and C rings of flavonoids. The extra ring introduces further chemical diversity to the densely substituted precursors, isoflavonoids, making rotenoids a significant group of compounds within the plant kingdom. Early biosynthesis studies by L.
View Article and Find Full Text PDFBackground And Aims: Trait-based approaches have advanced our understanding of plant strategies, yet they often focus on leaf-level traits, overlooking the functional roles of stem anatomy and twig characteristics. We investigated intraspecific trait variation in Salix flabellaris, an alpine dwarf shrub, along climatic gradients in the Himalayas. Our goal was to identify distinct axes of trait variation related to stem, twig, and leaf traits, assess their environmental drivers, and evaluate population-specific growth responses to recent climate change.
View Article and Find Full Text PDF