Review on biphasic blood drying method for rapid pathogen detection in bloodstream infections.

SLAS Technol

Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Cha

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rapid and accurate detection of pathogenic microorganisms in blood is critical for diagnosing life-threatening conditions such as bloodstream infections (BSIs). Current methods for the detection and identification of bacteria from large volumes of blood (5 mL) involve culture steps followed by DNA extraction/purification/concentration and Polymerase Chain Reaction (PCR)-based nucleic acid amplification. DNA extraction and amplification directly from blood samples is hampered by the complexity of the blood matrix, resulting in time-consuming and labor-intensive processes. This review delves into recent advancements in molecular diagnostics based on blood drying, coined as 'biphasic reaction', and highlights this new technique that attempts to overcome the limitations of traditional sample preparation and amplification processes. The biphasic blood drying method, in combination with isothermal amplification methods such as loop-mediated isothermal amplification (LAMP) or recombinase polymerase amplification (RPA), has recently been shown to improve the sensitivity of detection of bacterial, viral, and fungal pathogens from ∼1 mL of whole blood, while minimizing DNA loss and avoiding the use of extraction/purification/concentration kits. Furthermore, the biphasic approach in combination with LAMP has been shown to be a culture-free method capable of detecting bacteria in clinical samples with a sensitivity of ∼1 CFU/mL in ∼2.5 h. This represents a significant reduction in detection and identification time compared to current clinical procedures based on bacterial culture prior to PCR amplification. This review paper aims to be a guide to identify new opportunities for future advancements and applications of the biphasic technology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.slast.2025.100276DOI Listing

Publication Analysis

Top Keywords

blood drying
12
blood
8
biphasic blood
8
drying method
8
bloodstream infections
8
detection identification
8
isothermal amplification
8
amplification
7
detection
5
review biphasic
4

Similar Publications

Differentiating the processing degree of animal material by mass spectrometry: A feasibility study on porcine and bovine blood-derived feed ingredients.

Food Res Int

November 2025

German Federal Institute for Risk Assessment (BfR), Department Food Safety, National Reference Laboratory for Animal Protein in Feed, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany. Electronic address:

Processing food and feed sets off a variety of reactions (Maillard, (lipid) oxidation), which may be traced by covalent changes to e.g. proteins.

View Article and Find Full Text PDF

Background: Acanthopanax trifoliatus (L.) Voss or phak-paem, a traditional Thai plant in the Araliaceae family, has been reported to promote adaptogenic effects for a long time. The leaves have been used as a tonic to improve general weakness and to treat tuberculosis, lung hemorrhages, bruises, ulcers and contusions.

View Article and Find Full Text PDF

IntroductionThe ability to detect multiple cancer types with high sensitivity has the potential to reduce diagnostic delays and improve treatment outcomes. Diagnostic patterning tests (DPTs), which utilize self-organized patterns in drying body fluids, are a relatively unexplored diagnostic method. This systematic review and meta-analysis assessed their accuracy for multi-cancer detection.

View Article and Find Full Text PDF

A simple, sensitive, and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was successfully developed and validated to determine navitoclax and doxorubicin in rat plasma. Ketoconazole and daunorubicin were employed as internal standards to ensure accurate quantification and method consistency. The sample preparation involved a straightforward protein precipitation technique, which facilitated efficient extraction of the analytes from the plasma matrix.

View Article and Find Full Text PDF

Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity in the form of conformable aerogel beads. This dual-functional formulation is designed to absorb exudate, promote clotting, and provide localized antimicrobial action, all essential for accelerating wound repair in high-risk scenarios within a single biocompatible system.

View Article and Find Full Text PDF