98%
921
2 minutes
20
Molecular magnetoresistance shows promise for future computer memory and storage technology applications. In this study, we design a novel molecular device to achieve this magnetoresistance, where a [π⋯π] supramolecule composed of two DCV4T (dicyanovinyl end-capped quaterthiophene) monomers is employed as the functional unit, and sandwiched between two ferromagnetic electrodes. Density functional theory investigations reveal that the magnetoresistance ratio (MR) is influenced by the configuration of the supramolecule and the temperature. Remarkably, the maximum MR of the designed device can reach up to 18 000% even at room temperature. This exceptional magnetoresistance is basically associated with the destructive quantum interference (DQI) between electron transmissions through the highest-occupied and lowest-unoccupied molecular orbitals of the [π⋯π] supramolecule, occurring near the Fermi level of the device. Our study paves the way for significant enhancement of molecular magnetoresistance grounded in the DQI effect, especially through the use of [π⋯π] supramolecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5cp00212e | DOI Listing |
Adv Mater
September 2025
College of Physics, Donghua University, Shanghai, 201620, China.
The 180° switching of the perpendicular Néel vector induced by the spin-orbit torque (SOT) presents significant potential for ultradense and ultrafast antiferromagnetic SOT-magnetoresistive random-access memory. However, its experimental realization remains a topic of intense debate. Here, unequivocal evidence is provided for the SOT-induced 180° switching of the perpendicular Néel vector in collinear antiferromagnetic CrO in a Pt/CrO/Co trilayer structure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.
Discovering an efficient spintronic semiconductor workhorse with dual host capabilities as a channel and spin valve barrier remains one of the most elusive endeavors toward the development of spin-logic circuits. Graphene paved the way for two-dimensional (2D) materials, yet engineering a controlled band gap in it remains a challenge. Black phosphorus (BP) was recently unveiled as a potential candidate in the realm of 2D semiconductors, with carrier mobilities among the largest reported for a 2D material and a low spin-orbit coupling reminiscent of graphene.
View Article and Find Full Text PDFThe possibility that current passing through an organic molecule becomes spin-polarized is highly intriguing. Amongst these molecules, helicene units have recently been shown to exhibit such a chiral-induced spin selectivity (CISS) effect. Thus, helical nanographenes (NGs), whose core building block is a helicene unit, are natural candidates for generating CISS.
View Article and Find Full Text PDFNanoscale Horiz
July 2025
Department of Materials Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
Engineering electronically decoupled spin states is essential for achieving robust spin by suppressing inelastic spin-flip scattering induced by conduction electrons. Accordingly, the fabrication of spins on insulating ultrathin films such as MgO or NaCl deposited on metallic substrates has been intensively investigated over the past decades to mitigate electronic hybridization. However, these studies have predominantly focused on non-magnetic noble metal substrates.
View Article and Find Full Text PDFJ Am Chem Soc
August 2025
Universite d'Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, Angers F-49000, France.
Both enantiomers () and () of the chiral mixed-valence radical cation salts (DM-EDT-TTF)XO (X = Cl or Re) have been prepared by electrocrystallization. Single-crystal high-quality synchrotron radiation data allowed for the very accurate determination of their 298 and 18 K structures. At room temperature, they crystallize in the enantiomorphic space groups 22 and 22 for the () and () enantiomers, respectively, while at 18 K, the structures have been solved in the and space groups, respectively.
View Article and Find Full Text PDF