98%
921
2 minutes
20
DNA methylation, a dynamic epigenetic mark influencing gene expression, is regulated by DNA demethylases that remove methylated cytosines at genomic regions marked by the INCREASED DNA METHYLATION (IDM) complex. In Arabidopsis, IDM3, a small α-crystalline domain-containing protein, stabilises the IDM complex. To investigate its role in tomato, we generated slidm3 mutants using genome editing. These mutants displayed a 'hairy' phenotype with increased glandular trichomes, resembling the hairplus (hap) mutant. Affinity purification of SlIDM3-GFP associated proteins identified several chromatin remodelling factors, including HAP. Genome-wide DNA methylation analysis revealed sequence context dependent alterations in the slidm3-1 plants, similar to the hap mutant. CHH methylation was predominantly increased, while CG methylation, particularly in intergenic regions, was decreased in both mutants. This imbalanced methylation suggests the presence of a 'methylstat' mechanism attempting to restore methylation levels at abnormally demethylated sites in the mutants. Comparative functional analysis of differentially methylated regions in the slidm3-1 and hap mutants identified potential methylation-regulated genes that could be linked to the hairy phenotype. Our findings indicate that SlIDM3 may form a chromatin remodelling complex with HAP, epigenetically regulating trichome development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930289 | PMC |
http://dx.doi.org/10.1111/tpj.70085 | DOI Listing |
Clin Epigenetics
September 2025
Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany.
Background: Work-related stress is a well-established contributor to mental health decline, particularly in the context of burnout, a state of prolonged exhaustion. Epigenetic clocks, which estimate biological age based on DNA methylation (DNAm) patterns, have been proposed as potential biomarkers of chronic stress and its impact on biological aging and health. However, their role in mediating the relationship between work-related stress, physiological stress markers, and burnout remains unclear.
View Article and Find Full Text PDFImmunol Cell Biol
September 2025
Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India.
The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.
View Article and Find Full Text PDFBiochem Pharmacol
September 2025
Department of Biosciences, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal 700109, India. Electronic address:
The malignant manifestation of breast cancer is driven by complex molecular alterations that extend beyond genetic mutations to include epigenetic dysregulation. Among these, DNA methylation is a critical and reversible epigenetic modification that significantly influences breast cancer initiation, progression, and therapeutic resistance. This process, mediated by DNA methyltransferases (DNMTs), involves the addition of methyl groups to cytosine residues within CpG dinucleotides, resulting in transcriptional repression of genes.
View Article and Find Full Text PDFMol Hum Reprod
September 2025
Department of Obstetrics and Gynecology, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
Infertility impacts up to 17.5% of reproductive-aged couples worldwide. To aid in conception, many couples turn to assisted reproductive technology, such as IVF.
View Article and Find Full Text PDFEpigenomics
September 2025
College of Physical Education, Yangzhou University, Yangzhou, China.
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder lacking objective biomarkers for early diagnosis. DNA methylation is a promising epigenetic marker, and machine learning offers a data-driven classification approach. However, few studies have examined whole-blood, genome-wide DNA methylation profiles for ASD diagnosis in school-aged children.
View Article and Find Full Text PDF