Cluster-based downscaling of precipitation using Kolmogorov-Arnold Neural Networks and CMIP6 models: Insights from Oman.

J Environ Manage

Department of Engineering and I.T., University of Technology Sydney, Ultimo, NSW, 2007, Australia; University Research and Innovation Center (EKIK), Óbuda University, 1034, Budapest, Hungary; Department of Computer Science, Khazar University, 41 Mahsati, Baku, Republic of Azerbaijan. Electronic add

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate precipitation predictions are crucial for addressing climate change impacts on water resources, especially in arid regions like Oman. Therefore, this study evaluates three machine learning models-Random Forest (RF), Multilayer Perceptron Neural Networks (MLP-ANN), and Kolmogorov-Arnold Neural Networks (KANNs)-to downscale and predict precipitation patterns under climate scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5. We assessed each model's ability to reproduce past trends and predict future precipitation using historical data from 1995 to 2014 and projections from 2020 to 2099. The KANN model demonstrated exceptional proficiency in forecasting extreme precipitation occurrences, especially in the most severe scenario (SSP5-8.5). The MLP-ANN model offered a balanced methodology, yielding dependable forecasts that are adaptive to fluctuating situations, even amongst small increases in precipitation and uncertainty. The RF model generated the most reliable forecasts, suggesting small increases in future precipitation while closely correlating with historical data. The study indicates distinct seasonal patterns, with peak precipitation occurring during the monsoon season from June to August. The RF model predicted more intense and uniformly distributed precipitation during this period, demonstrating its advanced data processing capabilities. The geographical patterns predicted by each model exhibited temporal stability, highlighting their consistent reliability, which is essential for precise climate predictions. This comparative research highlights the significance of choosing a suitable machine learning model according to distinct forecasting requirements. Effective downscaling methodologies are essential for informed water resources management, particularly in areas susceptible to cyclones and water shortages. These results provide essential direction for policymakers to improve climate resilience, optimize water infrastructure, and formulate adaptation measures in Oman and other dry locations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2025.124971DOI Listing

Publication Analysis

Top Keywords

neural networks
12
precipitation
9
kolmogorov-arnold neural
8
water resources
8
machine learning
8
future precipitation
8
historical data
8
small increases
8
model
6
cluster-based downscaling
4

Similar Publications

A deep learning-based approach for measuring patellar cartilage deformations from knee MR images.

J Biomech

August 2025

Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA; Department of Mechanical Engineering & Materials Science, Pratt School of Engineering, Duke University, Durham,

While knee osteoarthritis (OA) is a leading cause of disability in the United States, OA within the patellofemoral joint is understudied compared to the tibiofemoral joint. Mechanical alterations to cartilage may be among the first changes indicative of early OA. MR-based protocols have probed patellar cartilage mechanical function by measuring deformations in response to exercise.

View Article and Find Full Text PDF

Identifying meaningful drug response biomarkers from public pharmacogenomic datasets with biologically informed interpretable neural networks.

Comput Biol Chem

September 2025

Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao Special Administrative Region of China. Electronic address:

With the advancements of next-generation sequencing, publicly available pharmacogenomic datasets from cancer cell lines provide a handle for developing predictive models of drug responses and identifying associated biomarkers. However, many currently available predictive models are often just used as black boxes, lacking meaningful biological interpretations. In this study, we made use of open-source drug response data from cancer cell lines, in conjunction with KEGG pathway information, to develop sparse neural networks, K-net, enabling the prediction of drug response in EGFR signaling pathways and the identification of key biomarkers.

View Article and Find Full Text PDF

Complexity of brain-like signals in self-organised nanoscale networks.

Neural Netw

August 2025

The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8140, New Zealand. Electronic address:

The biological brain is comprised of a complex, interconnected, self-assembled network of neurons and synapses. This network enables efficient and accurate information processing, unsurpassed by any other known computational system. Percolating networks of nanoparticles (PNNs) are complex, interconnected, self-assembled systems that exhibit many emergent brain-like characteristics.

View Article and Find Full Text PDF

Protein phosphorylation regulates protein function and cellular signaling pathways, and is strongly associated with diseases, including neurodegenerative disorders and cancer. Phosphorylation plays a critical role in regulating protein activity and cellular signaling by modulating protein-protein interactions (PPIs). It alters binding affinities and interaction networks, thereby influencing biological processes and maintaining cellular homeostasis.

View Article and Find Full Text PDF

DeepMobilome: predicting mobile genetic elements using sequencing reads of microbiomes.

Brief Bioinform

September 2025

Department of Computer Science, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea.

Motivation: Mobile genetic elements (MGEs) play an important role in facilitating the acquisition of antibiotic resistance genes (ARGs) within microbial communities, significantly impacting the evolution of antibiotic resistance. Understanding the mechanism and trajectory of ARG acquisition requires a comprehensive analysis of the ARG-carrying mobilome-a collective set of MGEs carrying ARGs. However, identifying the mobilome within complex microbiomes poses considerable challenges.

View Article and Find Full Text PDF