Publications by authors named "Mohammad G Zamani"

Vertical stratification is a fundamental characteristic of water bodies that significantly affects vertical convection and mixing dynamics. With the impact of climate change, thermal and chemical stratification in lakes and reservoirs has been exacerbated, leading to more pronounced environmental and ecological challenges. While previous studies have identified the impact of climate change on reservoir stratification, they have primarily focused on temperature variations in future periods.

View Article and Find Full Text PDF

Accurate precipitation predictions are crucial for addressing climate change impacts on water resources, especially in arid regions like Oman. Therefore, this study evaluates three machine learning models-Random Forest (RF), Multilayer Perceptron Neural Networks (MLP-ANN), and Kolmogorov-Arnold Neural Networks (KANNs)-to downscale and predict precipitation patterns under climate scenarios SSP1-2.6, SSP2-4.

View Article and Find Full Text PDF

In regions like Oman, which are characterized by aridity, enhancing the water quality discharged from reservoirs poses considerable challenges. This predicament is notably pronounced at Wadi Dayqah Dam (WDD), where meeting the demand for ample, superior water downstream proves to be a formidable task. Thus, accurately estimating and mapping water quality indicators (WQIs) is paramount for sustainable planning of inland in the study area.

View Article and Find Full Text PDF

Water quality indicators (WQIs), such as chlorophyll-a (Chl-a) and dissolved oxygen (DO), are crucial for understanding and assessing the health of aquatic ecosystems. Precise prediction of these indicators is fundamental for the efficient administration of rivers, lakes, and reservoirs. This research utilized two unique DL algorithms-namely, convolutional neural network (CNNs) and gated recurrent units (GRUs)-alongside their amalgamation, CNN-GRU, to precisely gauge the concentration of these indicators within a reservoir.

View Article and Find Full Text PDF

Water pollution escalates with rising waste discharge in river systems, as the rivers' limited pollution tolerance and constrained self-cleaning capacity compel the release of treated pollutants. Although several studies have shown that the non-dominated sorting genetic algorithm-II (NSGA-II) is an effective algorithm regarding the management of river water quality to reach water quality standards, to our knowledge, the literature lacks using a new optimization model, namely, the multi-objective cuckoo optimization algorithm (MOCOA). Therefore, this research introduces a new optimization framework, including non-dominated sorting and ranking selection using the comparison operator densely populated towards the best Pareto front and a trade-off estimation between the goals of discharges and environmental protection authorities.

View Article and Find Full Text PDF

Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a valuable indicator of water quality. Thus, the objectives of this study encompass: (1) the assessment of the predictive capabilities of four deep learning (DL) models - namely, recurrent neural network (RNN), long short-term memory (LSTM), gated recurrence unit (GRU), and temporal convolutional network (TCN) - in forecasting Chl-a concentrations; (2) the incorporation of these DL models into ensemble models (EMs) employing genetic algorithm (GA) and non-dominated sorting genetic algorithm (NSGA-II) to harness the strengths of each standalone model; and (3) the evaluation of the efficacy of the developed EMs.

View Article and Find Full Text PDF

Effective prediction of qualitative and quantitative indicators for runoff is quite essential in water resources planning and management. However, although several data-driven and model-driven forecasting approaches have been employed in the literature for streamflow forecasting, to our knowledge, the literature lacks a comprehensive comparison of well-known data-driven and model-driven forecasting techniques for runoff evaluation in terms of quality and quantity. This study filled this knowledge gap by comparing the accuracy of runoff, sediment, and nitrate forecasting using four robust data-driven techniques: artificial neural network (ANN), long short-term memory (LSTM), wavelet artificial neural network (WANN), and wavelet long short-term memory (WLSTM) models.

View Article and Find Full Text PDF