98%
921
2 minutes
20
Background: Phosphorylated alpha-synuclein (P-aSyn) is a biomarker for Parkinson's disease (PD), with potential relevance in intestinal inflammatory disorders.
Objectives: This study examines the distribution of P-aSyn in colonic tissues of patients with diverticular disease (DD) compared to age-matched controls.
Methods: P-aSyn distribution was analyzed in colon samples of 45 patients with diverticulitis (D-itis), 12 with diverticulosis (D-osis), and 30 controls via immunohistochemistry.
Results: P-aSyn immunoreactivity was found along enteric neurons of the myenteric and submucosal plexus in 93.1 % of participants, with similar distribution across D-itis, D-osis, and controls. Elevated reactivity appeared in 16.7 % of D-osis, 19.6 % of D-itis, and 30.0 % of controls.
Conclusion: P-aSyn presence in colonic tissue did not significantly differ between DD patients and controls, suggesting that DD-related inflammation does not notably affect P-aSyn expression. Further research is warranted to explore aSyn roles within the enteric nervous system in intestinal inflammatory disorders and their relation with neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923801 | PMC |
http://dx.doi.org/10.1016/j.ibneur.2025.02.009 | DOI Listing |
Alzheimers Dement
September 2025
Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
This review covers recent advances (2023-2024) in neuroimaging research into the pathophysiology, progression, and treatment of Alzheimer's disease (AD) and related dementias (ADRD). Despite the rapid emergence of blood-based biomarkers, neuroimaging continues to be a vital area of research in ADRD. Here, we discuss neuroimaging as a powerful tool to topographically visualize and quantify amyloid, tau, neurodegeneration, inflammation, and vascular disease in the brain.
View Article and Find Full Text PDFParkinsonism Relat Disord
September 2025
Translational and Clinical Research Institute, Newcastle University, UK.
Introduction: Dysfunction of the glymphatic system is thought to lead to build up of toxic proteins including β-amyloid and α-synuclein, and thus may be involved in dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). The Diffusion Tensor Image Analysis Along the Perivascular Space (DTI-ALPS) index has been proposed as a marker of glymphatic function.
Aims: To investigate DTI-ALPS in mild cognitive impairment (MCI) and dementia, and determine its relationship with cognitive decline, and biomarkers of neurodegeneration.
Neurology
October 2025
Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic de Barcelona, Fundació Recerca Clínic Barcelona-IDIBAPS, Spain.
Background And Objectives: α-Synuclein seed amplification assays (αSAAs) can improve the diagnosis of synucleinopathies and detect α-synuclein (αSyn) copathology in vivo in clinical practice. We aimed to evaluate the diagnostic performance of αSAA for detecting αSyn in CSF for diagnosing dementia with Lewy bodies (DLB) in a clinical cohort of cognitively impaired individuals. We explored how the coexistence of Alzheimer disease (AD) and αSyn pathology influences biomarker levels and clinical profiles.
View Article and Find Full Text PDFBrain
September 2025
IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, 40139, Italy.
An early diagnosis of Parkinson's disease (PD) represents a challenge and novel accurate biomarkers are therefore urgently needed. Detection of phosphorylated α-synuclein (p-α-syn) in skin nerve fibers has shown promise as such a marker. However, its accuracy for the identification of PD among patients with early signs of parkinsonism has not been thoroughly explored.
View Article and Find Full Text PDFBrain
September 2025
Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
Animal models of the pathology of Parkinson's disease (PD) have provided most of the treatments to date, but the disease is restricted to human patients. In vitro models using human pluripotent stem cells (hPSCs)-derived neural organoids have provided improved access to study PD etiology. This study established a method to generate human striatal-midbrain assembloids (hSMAs) from hPSCs for modeling alpha-synuclein (α-syn) propagation and recapitulating basal ganglia circuits, including nigrostriatal and striatonigral pathways.
View Article and Find Full Text PDF