98%
921
2 minutes
20
Navtemadlin is a potent inhibitor of the p53-MDM2 protein-protein interaction, which plays a critical role in the proliferation of p53-wildtype tumours. Whilst Navtemadlin has progressed to multiple Phase III clinical trials in oncology, little has been disclosed regarding its selectivity for MDM2 in cells. Here, we report the synthesis and validation of photoactivatable clickable probes of Navtemadlin, and their application to target discovery for Navtemadlin through affinity-based protein profiling. MDM2 was robustly identified as the main target, across two cell lines, using two distinct probe designs. While off-targets were identified, these were not consistent across cell lines and probe designs, consistent with a high degree of selectivity for the target protein. Whole proteome profiling experiments across different time points confirmed p53-mediated phenotypic activity and revealed novel expression patterns for key proteins in the p53 pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921932 | PMC |
http://dx.doi.org/10.1039/d5sc00120j | DOI Listing |
J Proteome Res
September 2025
Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands.
Plasma proteomics has regained attention in recent years through advancements in mass spectrometry instrumentation and sample preparation as well as new high-throughput affinity-based technologies. Here, we evaluate the analytical performance of the new Olink Reveal platform, a proximity extension assay (PEA)-based technology quantifying 1034 proteins and covering many biological pathways, in particular immune system processes. Using spiked-in recombinant Interleukin-10 (IL-10) and vascular endothelial growth factor D (VEGF-D) in the NIST SRM 1950 plasma standard, we assessed the linearity, sensitivity, precision, and accuracy of the Olink Reveal assay.
View Article and Find Full Text PDFCarbohydr Res
September 2025
Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama, 338-8570, Japa
Multivalent interactions between lectins and glycans are crucial for biological recognition; however, predicting functional inhibition based on binding affinity remains challenging. Herein, we investigated a series of structurally defined N-acetylglucosamine (GlcNAc)-functionalized dendrimers (1a-1c and 2a-2c) to examine how spatial orientation and temperature influenced the inhibition of wheat germ agglutinin (WGA). Using enzyme-linked lectin assays (ELLAs), we observed biphasic inhibition profiles for all the dendrimers, characterized by an initial enhancement of WGA binding at low concentrations, followed by effective inhibition at higher concentrations.
View Article and Find Full Text PDFInt Dent J
September 2025
College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, USA; College of Graduate Studies, Roseman University of Health Science, South Jordan, Utah, USA. Electronic address:
Introduction And Aim: Oral squamous cell carcinomas (OSCCs) are one of the most frequently diagnosed head and neck cancers with a poor prognosis despite the advancements in diagnostic techniques and treatment strategies. The progression of OSCC is driven by several molecular mechanisms, among them the overexpression of transcription factor RelA, which plays a crucial role by correlating with the clinicopathological characteristics.
Methods: This systematic investigation focused on identifying the top 25 crucial molecular descriptors to predict the RelA inhibitor through the quantitative structure-activity relationship (QSAR)-based artificial neural network model.
Med Res Rev
September 2025
Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
Solute carrier transporters (SLCs) are integral membrane proteins that play pivotal roles in maintaining cellular homeostasis by mediating the transport of a diverse range of substrates across cell membranes. With their involvement in fundamental physiological processes such as nutrient uptake, neurotransmitter signaling, and drug transport, SLCs have emerged as crucial players in health and disease. Dysregulation of SLC function has been implicated in a spectrum of disorders, including metabolic diseases, cancer, and neurological afflictions.
View Article and Find Full Text PDFRSC Adv
August 2025
Department of Chemistry, University of California, Davis One Shields Avenue Davis CA 95616 USA
Imbalances in cellular copper are increasingly implicated in metabolic disorders. Food-derived peptides are gaining attention for their ability to alleviate metabolic disease symptoms with little to no toxicity. In this work, we enriched copper-binding peptides from enzymatic digestions of rice bran protein hydrolysates Cu(ii)-based immobilized-metal affinity-based separations, identified the sequences by mass spectrometry, and performed physicochemical and sequence analysis of the enriched peptides.
View Article and Find Full Text PDF