98%
921
2 minutes
20
Metasurfaces (MSs), two-dimensional arrays of engineered nanostructures, have revolutionized optics by enabling precise manipulation of electromagnetic waves at subwavelength scales. These platforms offer unparalleled control over amplitude, phase, and polarization, unlocking advanced applications in imaging, communication, and sensing. Among them, plasmonic MSs stand out for their ability to exploit surface plasmon resonances (SPRs)-collective electron oscillations at metal-dielectric interfaces. This phenomenon enables extreme light confinement and field enhancement, leading to highly efficient light-matter interactions. The remarkable sensitivity of SPR to refractive index variations makes plasmonic MSs ideal for detecting minute biochemical and environmental changes with exceptional precision. Additionally, their tunable SPR characteristics enhance multifunctionality, enabling adaptive and real-time sensing. By leveraging these advantages, plasmonic MSs address critical challenges in modern sensing, driving breakthroughs in biomedical diagnostics, environmental monitoring, and chemical detection. This perspective explores recent advancements in plasmonic MSs, emphasizing flexible, multifunctional designs and the transformative role of artificial intelligence in optimizing performance and enabling real-time data analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/adc30f | DOI Listing |
Nanotechnology
March 2025
Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
Metasurfaces (MSs), two-dimensional arrays of engineered nanostructures, have revolutionized optics by enabling precise manipulation of electromagnetic waves at subwavelength scales. These platforms offer unparalleled control over amplitude, phase, and polarization, unlocking advanced applications in imaging, communication, and sensing. Among them, plasmonic MSs stand out for their ability to exploit surface plasmon resonances (SPRs)-collective electron oscillations at metal-dielectric interfaces.
View Article and Find Full Text PDFNat Prod Res
February 2025
Department of Chemistry, Sree Narayana College, Kollam, Kerala, India.
Plant mediated synthesis of metal nanoparticles (MNPs) has been considered as a reliable green technique for mitigating the involvement of toxic chemicals and which is widely used for desired applications. In the present study, a simple and environment friendly approach for the synthesis of silver nanoparticles (AgNPs) using the aqueous extract of was proposed. The phytochemicals present in acted as the reducing as well as the capping agents during the nanoparticle synthesis.
View Article and Find Full Text PDFBiosens Bioelectron
December 2023
Centro Regionale Information Communication Technology (CeRICT) scrl, I-82100, Benevento, Italy; Optoelectronics Group, Engineering Department, University of Sannio, I-82100, Benevento, Italy. Electronic address:
The increasing demand for vitamin D status assessment has highlighted the need for rapid, sensitive, and user-friendly methods for its detection in biological samples potentially integrated in Point-of-Care (PoC) diagnostic devices. Detection of the major circulating form of vitamin D, 25-hydroxyvitamin D3-25(OH)D3, is particularly challenging due to the laborious procedures for sample preparation and its low molecular weight (∼400 Da), which requires highly sensitive detection methods. In this study, we developed a novel label-free Lab-on-Fiber biosensing platform for highly sensitive detection of 25(OH)D3 based on the integration of plasmonic metasurfaces (MSs) on the tip of a single-mode optical fiber (OF).
View Article and Find Full Text PDFNanomaterials (Basel)
January 2023
Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan.
Functionalization of colloidal nanoparticles with organic dyes, which absorb photons in complementary spectral ranges, brings a synergistic effect for harvesting additional light energy. Here, we show functionalization of near-infrared (NIR) plasmonic nanoparticles (NPs) of bare and amino-group functionalized mesoporous silica-coated copper sulphide (CuS@MSS and CuS@MSS-NH) with specific tricarbocyanine NIR dye possessing sulfonate end groups. The role of specific surface chemistry in dye assembling on the surface of NPs is demonstrated, depending on the organic polar liquids or water used as a dispersant solvent.
View Article and Find Full Text PDFNanomaterials (Basel)
July 2022
CNR-IPCF Bari Division, Via Orabona 4, 70125 Bari, Italy.
Plasmonic nanostructures, featuring near infrared (NIR)-absorption, are rising as efficient nanosystems for in vitro photothermal (PT) studies and in vivo PT treatment of cancer diseases. Among the different materials, new plasmonic nanostructures based on CuS nanocrystals (NCs) are emerging as valuable alternatives to Au nanorods, nanostars and nanoshells, largely exploited as NIR absorbing nanoheaters. Even though CuS plasmonic properties are not linked to geometry, the role played by their size, shape and surface chemistry is expected to be fundamental for an efficient PT process.
View Article and Find Full Text PDF