A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Recent Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Engineering Strategies for Precise Strike Therapy against Tumor. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Effective drug delivery relies on the selection of suitable carriers, which is crucial for protein-based therapeutics such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). One of the key advantages of TRAIL is its ability to selectively induce apoptosis in cancer cells excluding healthy tissues by binding to death receptors DR4 and DR5, which are highly expressed in various cancer cells. Despite this promise, the clinical application of TRAIL has been limited by its short half-life, limited stability, and inefficient delivery to tumor sites. To overcome currently available clinical and engineering approaches, a series of sophisticated strategies is required: (a) the design of biomaterial-mediated carriers for enhanced targeting efficacy, particularly via optimizing selected materials, composition, formulation, and surface modulation. Moreover, (b) development of genetically modified cellular products for augmented TRAIL secretion toward tumor microenvironments and (c) cell surface engineering techniques for TRAIL immobilization onto infusible cell populations are also discussed in the present review. Among these approaches, living cell-based carriers offer the distinct advantage of systemically administered TRAIL-functionalized cells capturing circulating tumor cells in the bloodstream, thereby preventing secondary tumor formation. This review provides insight into the development of novel TRAIL delivery platforms, discusses considerations for clinical translation, and suggests future directions and complementary strategies to advance the field of TRAIL-based cancer therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922527PMC
http://dx.doi.org/10.34133/bmr.0170DOI Listing

Publication Analysis

Top Keywords

tumor necrosis
8
necrosis factor-related
8
factor-related apoptosis-inducing
8
apoptosis-inducing ligand
8
cancer cells
8
tumor
7
trail
6
ligand engineering
4
engineering strategies
4
strategies precise
4

Similar Publications