98%
921
2 minutes
20
Torque and continuous rotation are fundamental methods of actuation and manipulation in rigid robots. Soft robot arms use soft materials and structures to mimic the passive compliance of biological arms that bend and extend. This use of compliance prevents soft arms from continuously transmitting and exerting torques to interact with their environment. Here, we show how relying on patterning structures instead of inherent material properties allows soft robotic arms to remain compliant while continuously transmitting torque to their environment. We demonstrate a soft robotic arm made from a pair of mechanical metamaterials that act as compliant constant-velocity joints. The joints are up to 52 times stiffer in torsion than bending and can bend up to 45°. This robot arm continuously transmits torque while remaining flexible in all other directions. The arm's mechanical design achieves high motion repeatability (0.4 millimeters and 0.1°) when tracking trajectories. We then trained a neural network to learn the inverse kinematics, enabling us to program the arm to complete tasks that are challenging for existing soft robots, such as installing light bulbs, fastening bolts, and turning valves. The arm's passive compliance makes it safe around humans and provides a source of mechanical intelligence, enabling it to adapt to misalignment when manipulating objects. This work will bridge the gap between hard and soft robotics with applications in human assistance, warehouse automation, and extreme environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scirobotics.ads0548 | DOI Listing |
ACS Biomater Sci Eng
September 2025
Materials Engineering, McGill university, Montreal H3A0C5, Canada.
Transcutaneous devices such as dental implants frequently fail due to infections at their interfaces with epithelial tissues. These infections are facilitated by the lack of integration between the devices and the surrounding soft tissues. This study aims to improve epithelial integration through surface modification of a transcutaneous implant material (polyetheretherketone (PEEK)).
View Article and Find Full Text PDFACS Nano
September 2025
Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou 215124, China.
Acute lung injury (ALI) is characterized by the excessive accumulation of reactive oxygen species (ROS), which triggers a severe inflammatory cascade and the destruction of the alveolar-capillary barrier, leading to respiratory failure and life-threatening outcomes. Considering the limitations and adverse effects associated with current therapeutic interventions, developing effective and safe strategies that target the complex pathophysiological mechanisms of ALI is crucial for improving patient outcomes. Herein, we developed an inhalable, multifunctional nanotherapeutic (MSCNVs@CAT) by encapsulating catalase (CAT) in mesenchymal-stem-cell-derived nanovesicles (MSCNVs).
View Article and Find Full Text PDFJ Natl Cancer Inst
September 2025
Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States.
Background: Among childhood cancer survivors, germline rare variants in autosomal dominant cancer susceptibility genes (AD CSGs) could increase subsequent neoplasm (SNs) risks, but risks for rarer SNs and by age at onset are not well understood.
Methods: We pooled the Childhood Cancer Survivor Study and St Jude Lifetime Cohort (median follow-up = 29.7 years, range 7.
PLoS One
September 2025
Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Medical Sciences, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China.
Radiotherapy, a prevalent and effective treatment for various malignancies, often causes collateral damage to normal skin and soft tissues in the irradiated area. To address this, we developed a novel approach combining SVFG-modified adipose-derived high-activity matrix cell clusters (HAMCC) with concentrated growth factors (CGF) to enhance regeneration and repair of radiation-induced skin and soft tissue injuries. Our study included cellular assays, wound healing evaluations, and histological analyses.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Science, LLP "Research and Production Enterprise "Innovator", Astana, Kazakhstan.
This study investigates the physicochemical, microbiological, and microstructural changes in soft wheat grain during germination under varying moisture conditions: moderately dry, moist, and wet. Pre-harvest sprouting can severely compromise grain quality and usability; however, understanding germination-induced changes offers insights into potential utilization strategies. Physical parameters-including thousand-kernel weight, test weight, and falling number-showed strong correlation with germination time, decreasing by 8.
View Article and Find Full Text PDF