Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The majority of the unsupervised feature selection methods usually explore the first-order similarity of the data while ignoring the high-order similarity of the instances, which makes it easy to construct a suboptimal similarity graph. Furthermore, such methods, often are not suitable for performing feature selection due to their high complexity, especially when the dimensionality of the data is high. To address the above issues, a novel method, termed as unsupervised feature selection for high-order embedding learning and sparse learning (UFSHS), is proposed to select useful features. More concretely, UFSHS first takes advantage of the high-order similarity of the original input to construct an optimal similarity graph that accurately reveals the essential geometric structure of high-dimensional data. Furthermore, it constructs a unified framework, integrating high-order embedding learning and sparse learning, to learn an appropriate projection matrix with row sparsity, which helps to select an optimal subset of features. Moreover, we design a novel alternative optimization method that provides different optimization strategies according to the relationship between the number of instances and the dimensionality, respectively, which significantly reduces the computational complexity of the model. Even more amazingly, the proposed optimization strategy is shown to be applicable to ridge regression, broad learning systems and fuzzy systems. Extensive experiments are conducted on nine public datasets to illustrate the superiority and efficiency of our UFSHS.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2025.3546658DOI Listing

Publication Analysis

Top Keywords

feature selection
16
unsupervised feature
12
high-order embedding
12
embedding learning
12
learning sparse
12
sparse learning
12
selection high-order
8
high-order similarity
8
similarity graph
8
learning
7

Similar Publications

TMVR for the Treatment of Mitral Regurgitation: A State-of-the-Art Review.

Circ Cardiovasc Interv

September 2025

Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy (F.T., G.A., M.G., K.S., D.D., G.S., M.C.).

Mitral regurgitation is the most common valve disease worldwide. Despite its wide success in inoperable or high-risk surgical patients, transcatheter edge-to-edge repair remains limited by some anatomic features and the not negligible rate of significant residual regurgitation. Transcatheter mitral valve replacement has emerged as a viable alternative that promises to overcome these issues, but its development has been progressing slowly.

View Article and Find Full Text PDF

Background: Although splenomegaly is a common finding in Epstein-Barr virus (EBV) infection, splenic infarction is rarely reported and may be under-recognised, especially in adults. Neurological complications such as aseptic meningitis are also uncommon but documented. The simultaneous occurrence of both complications in the context of primary EBV infection is exceptional.

View Article and Find Full Text PDF

Purpose: Identifying radiomics features that help predict whether glioblastoma patients are prone to developing epilepsy may contribute to an improvement of preventive treatment and a better understanding of the underlying pathophysiology.

Materials And Methods: In this retrospective study, 3-T MRI data of 451 pretreatment glioblastoma patients (mean age: 61.2 ± 11.

View Article and Find Full Text PDF

In this contribution, Molecular Electron Density Theory (MEDT) is employed to investigate the (3 + 2) cycloaddition reaction between ()--methyl--(2-furyl)-nitrone 1 and but-2-ynedioic acid 2. DFT calculations at the M06-2X-D3/6-311+G(d,p) level of theory under solvent-free conditions at room temperature show that this reaction proceeds CA3-Z diastereoselectivity, with the formation of the CA3-Z cycloadduct being both thermodynamically and kinetically more favoured than the CA4-Z one. Reactivity parameters obtained from CDFT calculations reveal that compound 1 predominantly behaves as a nucleophile with moderate electrophilic features, in contrast to compound 2, which demonstrates strong electrophilicity and limited nucleophilic ability.

View Article and Find Full Text PDF

The bacterial DNA damage (SOS) response promotes DNA repair, DNA damage tolerance, and survival in the setting of genotoxic stress, including stress induced by antibiotics. In , translesion DNA synthesis can be fulfilled by Y-family DNA polymerases, including DNA polymerase IV (DinB). DinB features a more open active site and lacks proofreading ability, promoting error-prone replication.

View Article and Find Full Text PDF