A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Integrated AI and machine learning pipeline identifies novel WEE1 kinase inhibitors for targeted cancer therapy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The dysregulation of the cell cycle in cancer underscores the therapeutic potential of targeting WEE1 kinase, a key regulator of the G2/M checkpoint. This study harnessed artificial intelligence (AI)-driven methodologies, particularly the MORLD platform, to identify novel WEE1 inhibitors. Starting with clinically validated WEE1 inhibitors as references, we generated 20,000 structurally diverse compounds optimized for binding affinity, synthetic accessibility, and drug-likeness. A rigorous cheminformatics pipeline-comprising PAINS filtering, physicochemical property assessments, and molecular fingerprinting-refined this library to 242 promising candidates. Dimensionality reduction using UMAP and clustering via K-means enabled the prioritization of structurally unique leads. Molecular docking studies highlighted two compounds, MORLD5036 and MORLD6305, with exceptional binding affinities and interactions with key WEE1 active site residues. Molecular dynamics simulations and MM-GBSA binding free energy calculations further validated MORLD5036 as the most stable and potent inhibitor. Scaffold analysis revealed novel chemotypes distinct from existing inhibitors, enhancing potential for intellectual property. Comprehensive ADME profiling confirmed favorable pharmacokinetics, while synthetic accessibility evaluations indicated practicality for experimental validation. The identified lead compound, MORLD5036, exhibits favorable pharmacokinetics and novel chemotypes, positioning it as a potential therapeutic candidate for cancers reliant on WEE1-mediated cell cycle control. This integrated, AI-driven pipeline expedites the identification of next-generation WEE1 inhibitors, paving the way for advancements in precision oncology. Unlike traditional methods reliant on pre-existing datasets, this study leverages MORLD's reinforcement learning framework to autonomously generate inhibitors, enabling exploration of uncharted chemical space. These findings establish MORLD5036 as a computationally promising WEE1 inhibitor candidate warranting further experimental validation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11030-025-11157-yDOI Listing

Publication Analysis

Top Keywords

wee1 inhibitors
12
novel wee1
8
wee1 kinase
8
cell cycle
8
synthetic accessibility
8
novel chemotypes
8
favorable pharmacokinetics
8
experimental validation
8
wee1
7
inhibitors
6

Similar Publications