Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In common sense, the total activity of single-atom catalysts (SACs) increases monotonically with the densification of single-atom sites, encouraging a general effort in developing high-density SACs for a variety of reactions, such as the oxygen reduction reaction (ORR). However, the intrinsic activity of each single-atom site may not remain constant with increasing density, since their growing interactions at the subnanometer scale can no longer be ignored. Here we report the nonmonotonic relationship between ORR activity and single-atom density, as revealed by theoretical calculations and experimental validation. Taking cobalt-embedded carbon as the model SAC for ORR, when the distance between neighboring Co sites is reduced below about 0.5 nm, proximity effects including hydrogen bonding and steric hindrance between adjacent intermediates dominate the ORR energetics, leading to a unexpected drop in the intrinsic activity. Our experiments unambiguously verified that both the total and mass activities of Co-SACs show turning points with increasing single-atom density. This counterintuitive nonmonotonic relationship between total activity and single-atom density may guide the rational design of high-performance SACs with optimal site densities.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c03682DOI Listing

Publication Analysis

Top Keywords

activity single-atom
20
single-atom density
16
nonmonotonic relationship
12
total activity
12
relationship total
8
oxygen reduction
8
intrinsic activity
8
single-atom
7
activity
6
density
5

Similar Publications

Asymmetrically Coordinated CoN Sites with Enhanced Oxidase-like Activity for Dual-Mode Colorimetric Sensing of Nitrite.

ACS Appl Mater Interfaces

September 2025

State Key Laboratory of Advanced Materials for Intelligent Sensing & Key Laboratory of Organic Integrated Circuit Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Institute of Molecular Aggregation Science, Tianjin Univ

The design of efficient and user-friendly methods for nitrite detection is of great significance owing to its critical role in food safety and environmental protection. Herein, we report a novel cobalt single-atom nanozyme (CoN SA) featuring a highly asymmetric CoN coordination environment. This structural configuration stabilizes high-spin Co species and significantly enhances the oxidase-like activity.

View Article and Find Full Text PDF

A series of Cu-based single-atom catalysts (SACs) with asymmetric coordination were designed to accelerate lithium-sulfur (Li-S) chemistry. The electronegativity contrast from the dopant induces a localized electronic asymmetry that amplifies Jahn-Teller distortion at the Cu center. This distortion profoundly modulates the Cu 3d electronic structure and its interaction with Li-S intermediates.

View Article and Find Full Text PDF

This study integrates machine learning (ML) and density functional theory (DFT) to systematically investigate the oxygen electrocatalytic activity of two-dimensional (2D) TM(HXBHYB) (HX/YB = HIB (hexaaminobenzene), HHB (hexahydroxybenzene), HTB (hexathiolbenzene), and HSB (hexaselenolbenzene)) metal-organic frameworks (MOFs). By coupling transition metals (TM) with the above ligands, stable 2D TM(HXBHYB)@MOF systems were constructed. The Random Forest Regression (RFR) model outperformed the others, revealing the intrinsic relationship between the physicochemical properties of 2D TM(HXBHYB)@MOF and their ORR/OER overpotentials.

View Article and Find Full Text PDF

Water electrolysis for hydrogen production has become an industrial focus in the era of green chemistry due to its high purity of hydrogen production and environmentally friendly, efficient process. As the half reaction of water splitting at the anode, the oxygen evolution reaction (OER) features a complex and sluggish process that restricts the efficiency of water splitting. The mechanism of OER varies with different electrolytes.

View Article and Find Full Text PDF

Chemical C-N coupling from CO and N toward urea synthesis is an appealing approach for Bosch-Meiser urea production. However, this process faces significant challenges, including the difficulty of N activation, high energy barriers, and low selectivity. In this study, we theoretically designed a Ni triple-atom doped CuO catalyst, Ni TAC@CuO, which exhibits exceptional urea synthesis performance.

View Article and Find Full Text PDF