98%
921
2 minutes
20
Background: Machine learning (ML), a major branch of artificial intelligence, has not only demonstrated the potential to significantly improve numerous sectors of healthcare but has also made significant contributions to the field of solid organ transplantation. ML provides revolutionary opportunities in areas such as donor-recipient matching, post-transplant monitoring, and patient care by automatically analyzing large amounts of data, identifying patterns, and forecasting outcomes.
Aim: To conduct a comprehensive bibliometric analysis of publications on the use of ML in transplantation to understand current research trends and their implications.
Methods: On July 18, a thorough search strategy was used with the Web of Science database. ML and transplantation-related keywords were utilized. With the aid of the VOS viewer application, the identified articles were subjected to bibliometric variable analysis in order to determine publication counts, citation counts, contributing countries, and institutions, among other factors.
Results: Of the 529 articles that were first identified, 427 were deemed relevant for bibliometric analysis. A surge in publications was observed over the last four years, especially after 2018, signifying growing interest in this area. With 209 publications, the United States emerged as the top contributor. Notably, the "" and the "" emerged as the leading journals, publishing the highest number of relevant articles. Frequent keyword searches revealed that patient survival, mortality, outcomes, allocation, and risk assessment were significant themes of focus.
Conclusion: The growing body of pertinent publications highlights ML's growing presence in the field of solid organ transplantation. This bibliometric analysis highlights the growing importance of ML in transplant research and highlights its exciting potential to change medical practices and enhance patient outcomes. Encouraging collaboration between significant contributors can potentially fast-track advancements in this interdisciplinary domain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612896 | PMC |
http://dx.doi.org/10.5500/wjt.v15.i1.99642 | DOI Listing |
Eur J Case Rep Intern Med
August 2025
Department of Internal Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, USA.
Unlabelled: Autoimmune haemolytic anaemia (AIHA) is caused by antibody-mediated destruction of red blood cells. There are two broad categories of AIHA: warm and cold, both categorized by the thermal reactivity of the autoantibodies. Cold agglutinin disease (CAD) occurs at temperatures below normal body temperature and primarily involves IgM antibodies.
View Article and Find Full Text PDFFront Surg
August 2025
Department of Epidemiology, The University of Texas Health Science Center School of Public Health, Houston, TX, United States.
Background: Solid organ transplant (SOT) recipients are not only at increased risk of morbidity and mortality due to acute COVID-19 but may also experience poor long-term outcomes due to post-acute COVID-19 syndromes, including long COVID.
Methods: This retrospective, registry-based chart review evaluated graft failure and mortality among SOT recipients diagnosed with COVID-19 at a large, urban transplant center in Houston, Texas, USA. Patient populations were analyzed separately according to their long COVID status at the time of transplant to preserve the temporal relationship between the exposure (long COVID) and the outcome (graft failure or mortality).
Dev Growth Differ
September 2025
Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
Multicellular organisms generate organizational complexity through morphogenesis, in which mechanical forces orchestrate the movements and deformations of cells and tissues, while chemical signals regulate the molecular events that generate and coordinate these forces. One common denominator that is critical both for mechanics and biochemistry is material property. Material properties define how materials deform or rearrange under applied forces, and how rapidly molecules interact or spread in space and time.
View Article and Find Full Text PDFExp Clin Transplant
August 2025
>From the University of Maryland School of Medicine, Baltimore, Maryland, USA.
The development of non-Hodgkin lymphoma following liver transplant is rare. We present an unusual case of a 40-year-old female patient with morbid obesity who had undergone a deceased donor liver transplant for an unresectable neuroendocrine tumor of the liver 12 years ago. She presented with a lesion in the tail of pancreas that was suggestive of a recurrent neuroendocrine tumor.
View Article and Find Full Text PDFExp Clin Transplant
August 2025
>From the University Clinic for Nephrology, Faculty of Medicine, Saints Cyril and Methodius University in Skopje, Skopje, North Macedonia.
Posttransplant lymphoproliferative disorders are a serious complication after solid-organ transplant, with a reported incidence from 2% to 20%. Plasma cell neoplasms in solid-organ transplants represent a rare but increasingly serious complication after solid-organ transplant. We report a case of plasmablastic myeloma, a very rare variant of multiple myeloma with aggressive course and poor prognosis.
View Article and Find Full Text PDF