98%
921
2 minutes
20
Augmented intelligence puts together human and artificial agents to create a socio-technological system, so that they co-evolve by learning and optimizing decisions through intuitive interfaces, such as conversational, voice-enabled interfaces. However, existing research works on voice assistants relies on knowledge management and simulation methods instead of data-driven algorithms. In addition, practical application and evaluation in real-life scenarios are scarce and limited in scope. In this paper, we propose the integration of voice assistance technology with Automated Machine Learning (AutoML) in order to enable the realization of the augmented intelligence paradigm in the context of Industry 5.0. In this way, the user is able to interact with the assistant through Speech-To-Text (STT) and Text-To-Speech (TTS) technologies, and consequently with the Machine Learning (ML) pipelines that are automatically created with AutoML, through voice in order to receive immediate insights while performing their task. The proposed approach was evaluated in a real manufacturing environment. We followed a structured evaluation methodology, and we analyzed the results, which demonstrates the effectiveness of our proposed approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913813 | PMC |
http://dx.doi.org/10.3389/frai.2025.1538840 | DOI Listing |
ACS Sens
September 2025
Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
In recent AI-driven disease diagnosis, the success of models has depended mainly on extensive data sets and advanced algorithms. However, creating traditional data sets for rare or emerging diseases presents significant challenges. To address this issue, this study introduces a direct-self-attention Wasserstein generative adversarial network (DSAWGAN) designed to improve diagnostic capabilities in infectious diseases with limited data availability.
View Article and Find Full Text PDFJMIR Res Protoc
September 2025
Department of Urology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.
View Article and Find Full Text PDFJ Palliat Med
September 2025
Skaggs School of Pharmacy & Pharmaceutical Sciences, UC San Diego Health Sciences, San Diego, California, USA.
Artificial intelligence (AI), particularly large language models (LLMs), offers the potential to augment clinical decision-making, including in palliative care pharmacy, where personalized treatment and assessments are important. Despite the growing interest in AI, its role in clinical reasoning within specialized fields such as palliative care remains uncertain. This study examines the performance of four commercial-grade LLMs on a Script Concordance Test (SCT) designed for pharmacy students in a pain and palliative care elective, comparing AI outputs with human learners' performance at baseline.
View Article and Find Full Text PDFAJR Am J Roentgenol
September 2025
Department of Radiology, Stanford University, Stanford, CA, USA.
The increasing complexity and volume of radiology reports present challenges for timely critical findings communication. To evaluate the performance of two out-of-the-box LLMs in detecting and classifying critical findings in radiology reports using various prompt strategies. The analysis included 252 radiology reports of varying modalities and anatomic regions extracted from the MIMIC-III database, divided into a prompt engineering tuning set of 50 reports, a holdout test set of 125 reports, and a pool of 77 remaining reports used as examples for few-shot prompting.
View Article and Find Full Text PDFDisabil Rehabil Assist Technol
September 2025
International Communication College, Jilin International Studies University, Changchun, Jilin, China.
Background: Conventional automated writing evaluation systems typically provide insufficient support for students with special needs, especially in tonal language acquisition such as Chinese, primarily because of rigid feedback mechanisms and limited customisation.
Objective: This research develops context-aware Hierarchical AI Tutor for Writing Enhancement(CHATWELL), an intelligent tutoring platform that incorporates optimised large language models to deliver instantaneous, customised, and multi-dimensional writing assistance for Chinese language learners, with special consideration for those with cognitive learning barriers.
Methods: CHATWELL employs a hierarchical AI framework with a four-tier feedback mechanism designed to accommodate diverse learning needs.