Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spatial omics enable the characterization of colocalized cell communities that coordinate specific functions within tissues. These communities, or niches, are shaped by interactions between neighboring cells, yet existing computational methods rarely leverage such interactions for their identification and characterization. To address this gap, here we introduce NicheCompass, a graph deep-learning method that models cellular communication to learn interpretable cell embeddings that encode signaling events, enabling the identification of niches and their underlying processes. Unlike existing methods, NicheCompass quantitatively characterizes niches based on communication pathways and consistently outperforms alternatives. We show its versatility by mapping tissue architecture during mouse embryonic development and delineating tumor niches in human cancers, including a spatial reference mapping application. Finally, we extend its capabilities to spatial multi-omics, demonstrate cross-technology integration with datasets from different sequencing platforms and construct a whole mouse brain spatial atlas comprising 8.4 million cells, highlighting NicheCompass' scalability. Overall, NicheCompass provides a scalable framework for identifying and analyzing niches through signaling events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11985353PMC
http://dx.doi.org/10.1038/s41588-025-02120-6DOI Listing

Publication Analysis

Top Keywords

signaling events
8
niches
6
quantitative characterization
4
characterization cell
4
cell niches
4
niches spatially
4
spatially resolved
4
resolved omics
4
omics data
4
spatial
4

Similar Publications

An integrated framework for evolution of ciliated protists (Protista, Ciliophora) from the perspective of comparative genomics.

Mol Phylogenet Evol

September 2025

Laboratory of Biodiversity and Evolution of Protozoa, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China. Electronic address:

Early-branching eukaryotes are associated with the early branching events during eukaryogenesis. Understanding their genomic diversity and evolution can provide insights into the origin and speciation of eukaryotes. Ciliated protists (ciliates) are a group of early-branching unicellular eukaryotes with a high biodiversity, making them excellent models for evolutionary studies.

View Article and Find Full Text PDF

Advances in hemocytes regeneration of aquatic invertebrates: Mechanisms and implications.

Dev Comp Immunol

September 2025

State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, Zhejiang 315211, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology center, Qingdao, Shandong 266237, China. Electronic address:

Hematopoiesis is the process responsible for the generation of blood cells in both the circulation and tissues. It plays a crucial role in maintaining homeostasis and defending against infections in animals. Although hematopoiesis is a common feature among animals with a circulatory system, the specific mechanisms involved in hematopoietic events vary significantly among invertebrates.

View Article and Find Full Text PDF

Dynamic non-equilibrium effects (DNEs) of imbibition processes in an air-water two-phase fine sandy medium- a laboratory-scale experimental study.

J Contam Hydrol

September 2025

School of Marine Sciences, Sun Yat-sen University, 135 Xin'gang RD.W., Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China. Electronic address:

We systematically investigated DNEs throughout imbibition processes, specifically evaluating: (1) the temporal correspondence between DNE development and changes in water saturation/capillary pressure, and (2) the dominant factors governing DNE magnitude during imbibition. The signal drift during extended testing, and the gravitational effect on both the capillary pressure and water saturation were eliminated. The results indicate that, when water saturation was below a threshold value (∼0.

View Article and Find Full Text PDF

Background And Objective: Preterm infants are characterized by immature cardiorespiratory systems and require continuous monitoring of physiological signals in neonatal intensive care units (NICUs) to assess their clinical condition and return alarms in critical situations. However, many alarms are false or clinically irrelevant, leading to alarm fatigue for nurses and clinicians. A particularly high false alarm rate is reported for central apneas (CAs), with precision as low as 0.

View Article and Find Full Text PDF

Complexity of brain-like signals in self-organised nanoscale networks.

Neural Netw

August 2025

The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8140, New Zealand. Electronic address:

The biological brain is comprised of a complex, interconnected, self-assembled network of neurons and synapses. This network enables efficient and accurate information processing, unsurpassed by any other known computational system. Percolating networks of nanoparticles (PNNs) are complex, interconnected, self-assembled systems that exhibit many emergent brain-like characteristics.

View Article and Find Full Text PDF