A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Diverse ancestral representation improves genetic intolerance metrics. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The unprecedented scale of genomic databases has revolutionized our ability to identify regions in the human genome intolerant to variation-regions often implicated in disease. However, these datasets remain constrained by limited ancestral diversity. Here, we analyze whole-exome sequencing data from 460,551 UK Biobank and 125,748 Genome Aggregation Database (gnomAD) participants across multiple ancestries to test several key intolerance metrics, including the Residual Variance Intolerance Score (RVIS), Missense Tolerance Ratio (MTR), and Loss-of-Function Observed/Expected ratio (LOF O/E). We demonstrate that increasing ancestral representation, rather than sample size alone, critically drives their performance. Scores trained on variation observed in African and Admixed American ancestral groups show higher resolution in detecting haploinsufficient and neurodevelopmental disease risk genes compared to scores trained on European ancestry groups. Most strikingly, MTR trained on 43,000 multi-ancestry exomes demonstrates greater predictive power than when trained on a nearly 10-fold larger dataset of 440,000 non-Finnish European exomes. We further find that European ancestry group-based scores are likely approaching saturation. These findings highlight the need for enhanced population representation in genomic resources to fully realize the potential of precision medicine and drug discovery. Ancestry group-specific scores are publicly available through an interactive portal: http://intolerance.public.cgr.astrazeneca.com/ .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920395PMC
http://dx.doi.org/10.1038/s41467-025-57885-5DOI Listing

Publication Analysis

Top Keywords

ancestral representation
8
intolerance metrics
8
scores trained
8
european ancestry
8
diverse ancestral
4
representation improves
4
improves genetic
4
genetic intolerance
4
metrics unprecedented
4
unprecedented scale
4

Similar Publications