Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Angiogenesis is crucial for minimising ischemic injury postmyocardial infarction (MI), making it a significant target for cardioprotective therapies. While Kindlin-3 has been linked to angiogenesis in breast cancer, its specific function in the context of MI remains largely unexplored. Although Kindlin-3 has been implicated in breast cancer-related angiogenesis, its role in MI remains underexplored. This study investigates the role of Kindlin-3 in promoting angiogenesis, a process critical for cardiac recovery following MI. The study demonstrated a significant upregulation of Kindlin-3 in cardiac microvascular endothelial cells (CMECs) in mice post-MI. Overexpression of Kindlin-3, achieved through cardiotropic adeno-associated virus serotype 9 (AAV9) with the endothelial-specific promoter Tie2, enhanced myocardial angiogenesis, improved cardiac function, decreased cardiomyocyte apoptosis and reduced fibrosis. In vitro, Kindlin-3 overexpression promoted CMECs proliferation, migration, tube formation and the expression of angiogenesis-related genes. Conversely, Kindlin-3 knockdown exerted opposite effects. Mechanistically, Kindlin-3 activated the Notch signalling pathway, as its effects were abrogated by the Notch inhibitor DAPT and β1 integrin knockdown. This study identifies Kindlin-3 as a novel enhancer of angiogenesis and suggests its potential as a therapeutic target for myocardial repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915616 | PMC |
http://dx.doi.org/10.1111/jcmm.70494 | DOI Listing |