98%
921
2 minutes
20
Organismal aging is accompanied by the accumulation of senescent cells in the body, which drives tissue dysfunction. Senescent cells have a distinctive profile, including proliferation arrest, resistance to apoptosis, altered gene expression, and high inflammation. Despite global signaling and metabolic dysregulation during senescence, the underlying reasons for changes in signaling remain unclear. GPCRs are pivotal in cellular signaling, dynamically mediating the complex interplay between cells and their surrounding environment to maintain cellular homeostasis. The chemokine receptor CXCR4 plays a crucial role in modulating immune responses and inflammation. It has been shown that the expression of CXCR4 increases in cells undergoing senescence, which enhances inflammation postactivation. Here, we examine CXCR4 signaling in deeply senescent cells (aged cells), where cholesterol and its oxidized derivatives, oxysterols, affect receptor function. We report elevated oxysterol levels in senescent cells, which altered classical CXCL12-mediated CXCR4 signaling. Tail-oxidized sterols disrupted signaling more than ring-oxidized counterparts. Molecular dynamics simulations revealed that 27-hydroxycholesterol displaces cholesterol and binds strongly to alter the conformation of critical signaling residues, modifying the sterol-CXCR4 interaction landscape. Our study provides a molecular view of the observed mitigated GPCR signaling in the presence of oxysterols, which switched G-protein signaling from Gα to Gα class. Overall, we present an altered paradigm of GPCR signaling, where cholesterol oxidation alters the signaling outcome in aged cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.4c00617 | DOI Listing |
Arch Med Res
September 2025
Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan. Electronic address:
Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.
View Article and Find Full Text PDFSci Transl Med
September 2025
Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.
Triple-negative breast cancers (TNBCs) lack predictive biomarkers to guide immunotherapy, especially during early-stage disease. To address this issue, we used single-cell RNA sequencing, bulk transcriptomics, and pathology assays on samples from 171 patients with early-stage TNBC receiving chemotherapy with or without immunotherapy. Our investigation identified an enriched subset of interferon (IFN)-induced CD8 T cells in early TNBC samples, which predict immunotherapy nonresponsiveness.
View Article and Find Full Text PDFTissue Eng Part B Rev
September 2025
Department of Pharmaceutics School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
The poor prognosis constitutes a significant difficulty for spinal cord injury (SCI) individuals. Although mesenchymal stem cells (MSCs) hold promises as advanced therapy medicinal products (ATMPs) for SCI patients, challenges such as Good Manufacturing Practice-compliant manufacturing, cellular senescence, and limited therapeutic efficacy continue to hinder their clinical translation. Recent advances have identified botanical nanovesicles (BNs) as potent bioactive mediators capable of "priming" MSCs to self-rejuvenate, augment paracrine effect, and establish inflammatory tolerance.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Phytoveda Pvt. Ltd, Mumbai, 400022, India.
Background: The dysregulation of long-chain noncoding RNAs (lncRNAs) causes several complex human diseases including neurodegenerative disorders across the globe.
Methods And Results: This study aimed to investigate lncRNA expression profiles of Withania somnifera (WS)-treated human neuroblastoma SK-N-SH cells at different timepoints (3 & 9 h) and concentrations (50 & 100 µg/mL) using RNA sequencing. Differential gene expression analysis showed a total of 4772 differentially expressed lncRNAs, out of which 3971 were upregulated and 801 were downregulated compared to controls.
J Cell Physiol
September 2025
Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Ovarian granulosa cells (GCs) are pivotal for follicular homeostasis, and their dysregulated apoptosis drives age-related ovarian aging. The Hippo signaling pathway, modulated by long noncoding RNAs (lncRNAs), is implicated in regulating GCs proliferation and ovarian aging. TEAD2 (Transcriptional Enhanced Associate Domain 2), a key downstream transcription factor of the Hippo signaling pathway, plays a critical role in regulating cell proliferation, apoptosis, and embryonic stem cell self-renewal.
View Article and Find Full Text PDF