98%
921
2 minutes
20
Quantum dots (QDs) exhibit fluorescence properties with promising prospects for biomedical applications; however, the QDs synthesized in organic solvents shows poor biocompatibility, limiting their use in biological systems. We developed an approach for synthesizing QDs in live cells by coupling a series of intracellular metabolic pathways in a precise spatial and temporal sequence. We have validated this approach in yeast (Saccharomyces cerevisiae), Staphylococcus aureus, Michigan Cancer Foundation-7 (MCF-7) and Madin-Darby canine kidney (MDCK) cells. The intracellularly synthesized QDs are inherently stable and biocompatible, making them suitable for the direct in situ labeling of cells and cell-derived vesicles. Here, we provide an optimized workflow for the live-cell synthesis of QDs by using S. cerevisiae, S. aureus or MCF-7 cells. In addition, we detail a cell-free aqueous synthetic system (quasi-biosynthesis) containing enzymes, electrolytes, peptides and coenzymes, which closely mimics the intracellular synthetic conditions used in our cell culture system. In this solution, we synthesize biocompatible ultrasmall QDs that are easier to purify and characterize than those synthesized in cells. The live-cell-synthesized QDs can be used for bioimaging and microvesicle detection, whereas the quasi-biosynthesized QDs are suitable for applications such as biodetection, biolabeling and real-time imaging. The procedure can be completed in 3-4 d for live-cell QD synthesis and 2 h for the quasi-biosynthesis of QDs. The procedure is suitable for users with expertise in chemistry, biology, materials science and synthetic biology. This approach encourages interested researchers to engage in the field of QDs and develop further biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41596-024-01133-5 | DOI Listing |
ACS Chem Biol
September 2025
Institute for Biomedicine and Glycomics, Griffith University, Queensland, 4111 Brisbane, Australia.
Small-molecule metabolic chemical probes are tailored chemical biology tools that are designed to detect and visualize biological processes within a cell or an organism. Nucleoside analogues are a subset of metabolic probes that enable the study of DNA synthesis, proliferation kinetics, and cell cycle progression. However, most available nucleoside analogue probes have been designed for use in mammalian cells, limiting their use in other species, where there are metabolic pathway differences.
View Article and Find Full Text PDFCell Commun Signal
September 2025
Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India.
Background: Cancer cells, which rely heavily on mitochondria for their energy demands and oncometabolites, have a high mitochondrial load, often associated with an aggressive, invasive, and metastatic phenotype. Mitochondrial ROS (mtROS), which play a causal role in cancer, represent the Achilles' heel of cancer since excessive mtROS causes protein misfolding/aggregation, resulting in cell death via proteotoxic stress. Furthermore, the detailed underlying mechanism(s) of mitochondrial oxidative stress-induced cell death remain obscure.
View Article and Find Full Text PDFStem Cell Res Ther
September 2025
Department for Small Animals and Horses, Centre for Equine Health and Research, Equine Surgery Unit, Veterinary Tissue Engineering and Regenerative Medicine Laboratory, University of Veterinary Medicine Vienna, Vienna, Austria.
Background: Osteoarthritis (OA) remains an intractable condition due to the limited regenerative capacity of adult cartilage. Extracellular vesicles (EVs) have emerged as promising therapeutics, yet the optimal donor cell source is still undetermined, as both donor cell type and age significantly influence EV therapeutic efficacy. This study evaluates the therapeutic potential of EVs derived from ovine fetal articular chondrocytes (fCCs) and ovine fetal umbilical cord blood mesenchymal stromal cells (fMSCs) compared to EVs from two immortalized human perinatal cell lines, Wharton's jelly (WJ-MSCs) and amnion MSCs (P-MSCs), on inflamed ovine adult chondrocytes and synoviocytes in vitro.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Department of Pathology & Laboratory Medicine and McAllister Heart Institute, University of North Carolina Chapel Hill;
Endothelial cells (ECs) play a central role in regulating fatty acid (FA) transport from the bloodstream into metabolic tissues, yet tools to quantify EC FA uptake in a reliable, scalable manner remain limited. Here, we present a rapid, quantitative, and cost-effective assay to measure FA uptake in ECs using fluorescent FA analogs (BODIPY-C12 and BODIPY-C16), which allow investigation of chain length-specific uptake dynamics in a 96-well plate format. The protocol incorporates positive (3-hydroxyisobutyrate, lactate) and negative (niclosamide) controls and is validated in both primary (HUVECs) and immortalized (EA.
View Article and Find Full Text PDFCell Mol Life Sci
August 2025
Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain.
The 3D organization of the genome plays a critical role in regulating gene expression, maintaining cellular identity, and mediating responses to environmental cues. Advances in super-resolution microscopy and genomic technologies have enabled unprecedented insights into chromatin architecture at nanoscale resolution. However, the complexity and volume of data generated by these techniques necessitate innovative computational strategies for effective analysis and interpretation.
View Article and Find Full Text PDF